aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorFranciszek Malinka <franciszek.malinka@gmail.com>2023-06-26 16:29:55 +0200
committerFranciszek Malinka <franciszek.malinka@gmail.com>2023-06-26 16:29:55 +0200
commit38b8bb6ebcb5cb1fe6c0223f86fc87bc12e09efa (patch)
treea633b5b9c8967311c8db36c50baeb20fc053a74c
parent8aa2eafb03ab148d99b616e8c15c41612f7829ad (diff)
update
-rw-r--r--semestr2/algebra2r/notatki/notatki.pdfbin417240 -> 443055 bytes
-rw-r--r--semestr2/algebra2r/notatki/notatki.tex52
-rw-r--r--semestr2/algebra2r/notatki/sections/alg-ext.tex2
-rw-r--r--semestr2/algebra2r/notatki/sections/finite-fields.tex3
-rw-r--r--semestr2/algebra2r/notatki/sections/galois-cont.tex2
-rw-r--r--semestr2/algebra2r/notatki/sections/galois.tex4
-rw-r--r--semestr2/algebra2r/notatki/sections/lioville.tex139
-rw-r--r--semestr2/algebra2r/notatki/sections/norm-and-trace.tex2
-rw-r--r--semestr2/algebra2r/notatki/sections/prelim.tex2
-rw-r--r--semestr2/algebra2r/notatki/sections/unity-roots.tex2
10 files changed, 182 insertions, 26 deletions
diff --git a/semestr2/algebra2r/notatki/notatki.pdf b/semestr2/algebra2r/notatki/notatki.pdf
index 9c9aec4..15ecfe1 100644
--- a/semestr2/algebra2r/notatki/notatki.pdf
+++ b/semestr2/algebra2r/notatki/notatki.pdf
Binary files differ
diff --git a/semestr2/algebra2r/notatki/notatki.tex b/semestr2/algebra2r/notatki/notatki.tex
index ee16bfa..f715517 100644
--- a/semestr2/algebra2r/notatki/notatki.tex
+++ b/semestr2/algebra2r/notatki/notatki.tex
@@ -1,5 +1,4 @@
-\documentclass[11pt, a4paper, final]{amsart}
-\setlength{\emergencystretch}{2em}
+\documentclass[11pt, a4paper, final]{amsart} \setlength{\emergencystretch}{2em}
\usepackage[utf8]{inputenc}
@@ -54,9 +53,13 @@
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\Int}{{Int}}
\DeclareMathOperator{\ord}{{ord}}
+\DeclareMathOperator{\acl}{{acl}}
\DeclareMathOperator{\Tr}{{Tr}}
\DeclareMathOperator{\rng}{{Rng}}
\DeclareMathOperator{\dom}{{Dom}}
+\DeclareMathOperator{\alg}{{alg}}
+\DeclareMathOperator{\End}{{End}}
+\DeclareMathOperator{\trdeg}{{trdeg}}
\newcommand{\cupdot}{\mathbin{\mathaccent\cdot\cup}}
\newcommand{\cC}{\mathcal C}
@@ -64,6 +67,7 @@
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cG}{\mathcal{G}}
+\newcommand{\cP}{\mathcal{P}}
\newcommand{\cH}{\mathcal{H}}
\newcommand{\bN}{\mathbb N}
\newcommand{\bR}{\mathbb R}
@@ -74,6 +78,7 @@
\newcommand{\cK}{\mathcal K}
\newcommand{\cL}{\mathcal L}
\newcommand{\cT}{\mathcal T}
+\newcommand{\cN}{\mathcal N}
\newcommand{\defeq}{\overset{\text{def}}{=}}
\newcommand{\FrAut}{\Pi}
@@ -143,22 +148,29 @@
\newcommand{\xqed}[1]{% \leavevmode\unskip\penalty9999 \hbox{}\nobreak\hfill
\quad\hbox{\ensuremath{#1}}}
-\title{Tytuł}
-\author{Franciszek Malinka}
+% \usepackage{blindtext}
+% \usepackage{titlesec}
+
+\title{Algebra 2R notes}
+\author{Franciszek Malinka\\University of Wrocław}
+\date{June 2023}
+
\begin{document}
- \newpage
- \thispagestyle{empty}
- \begin{center}
- \textbf{\textit{\large Franciszek Malinka}}\\
- \vspace{0.5cm}
- {\Large Algebra 2R notes}\\
- \end{center}
- \vspace{3cm}
- \vfill
- \begin{center}
- {\large Wrocław 2023}\\
- \end{center}
+ % \newpage
+ % \thispagestyle{empty}
+ % \begin{center}
+ % \textbf{\textit{\large Franciszek Malinka}}\\
+ % \vspace{0.5cm}
+ % {\Large Algebra 2R notes}\\
+ % \end{center}
+ % \vspace{3cm}
+ % \vfill
+ % \begin{center}
+ % {\large Wrocław 2023}\\
+ % \end{center}
+
+ \maketitle
\newpage
@@ -186,6 +198,8 @@
\href{franciszek.malinka@gmail.com}{write me an email} or
\href{https://www.buymeacoffee.com/framal}{buy me a coffee}.
+ \tableofcontents
+
\section{Preliminaries}
\label{section:preliminaries}
\subfile{sections/prelim}
@@ -203,7 +217,7 @@
\label{section:finite-fields}
\subfile{sections/finite-fields}
- \section{Galois extensions}
+ \section{Galois group}
\label{section:galois}
\subfile{sections/galois}
@@ -218,4 +232,8 @@
\section{Transcendental extensions}
\label{section:lioville}
\subfile{sections/lioville}
+
+ \section{Modules}
+ \label{section:modules}
+ \subfile{sections/modules}
\end{document}
diff --git a/semestr2/algebra2r/notatki/sections/alg-ext.tex b/semestr2/algebra2r/notatki/sections/alg-ext.tex
index 4e9ae10..179bb3a 100644
--- a/semestr2/algebra2r/notatki/sections/alg-ext.tex
+++ b/semestr2/algebra2r/notatki/sections/alg-ext.tex
@@ -1,4 +1,4 @@
-\documentclass[../notes.tex]{subfiles}
+\documentclass[../notatki.tex]{subfiles}
\begin{document}
\subsection{Algebraic closeness}
\begin{definition}
diff --git a/semestr2/algebra2r/notatki/sections/finite-fields.tex b/semestr2/algebra2r/notatki/sections/finite-fields.tex
index 4e623f0..2f68540 100644
--- a/semestr2/algebra2r/notatki/sections/finite-fields.tex
+++ b/semestr2/algebra2r/notatki/sections/finite-fields.tex
@@ -1,8 +1,9 @@
-\documentclass[../notes.tex]{subfiles}
+\documentclass[../notatki.tex]{subfiles}
\begin{document}
Non-trivial finite fields can be only of $\Char = p$ prime. Also, we can
describe all of them very specifically.
+ \subsection{Basic facts}
\begin{remark}
Let $K$ be a finite field $\Char = p > 0$, Then $K^{*}$ (the multiplicative
subgroup) is also finite and for $n = |K|$ we have $x^n = x$ for any $x\in
diff --git a/semestr2/algebra2r/notatki/sections/galois-cont.tex b/semestr2/algebra2r/notatki/sections/galois-cont.tex
index 119e31a..2896ce9 100644
--- a/semestr2/algebra2r/notatki/sections/galois-cont.tex
+++ b/semestr2/algebra2r/notatki/sections/galois-cont.tex
@@ -1,4 +1,4 @@
-\documentclass[../notes.tex]{subfiles}
+\documentclass[../notatki.tex]{subfiles}
\begin{document}
\subsection{Galois extension and Artin's theorem}
So far we were focusing on the absolute Galois group $G(\hat{K}/K)$. In this
diff --git a/semestr2/algebra2r/notatki/sections/galois.tex b/semestr2/algebra2r/notatki/sections/galois.tex
index 5adefb2..e15aa10 100644
--- a/semestr2/algebra2r/notatki/sections/galois.tex
+++ b/semestr2/algebra2r/notatki/sections/galois.tex
@@ -1,6 +1,6 @@
-\documentclass[../notes.tex]{subfiles}
+\documentclass[../notatki.tex]{subfiles}
\begin{document}
- \subsection{Galois group}
+ \subsection{Definition}
From now on we work with algebraic extensions $K\subset L\subset M$ and we will assume
that $L\subset M\subset \hat{K}$.
diff --git a/semestr2/algebra2r/notatki/sections/lioville.tex b/semestr2/algebra2r/notatki/sections/lioville.tex
index 680bed1..ecfb0b9 100644
--- a/semestr2/algebra2r/notatki/sections/lioville.tex
+++ b/semestr2/algebra2r/notatki/sections/lioville.tex
@@ -1,4 +1,4 @@
-\documentclass[../notes.tex]{subfiles}
+\documentclass[../notatki.tex]{subfiles}
\begin{document}
\subsection{Lioville numbers}
\begin{lemma}
@@ -12,4 +12,141 @@
not algebraic, e.g. that $\sum_{n=1}^\infty \frac{1}{2^{n!}}$ is
transcendental.
+ \subsection{Transcendental extensions}
+
+ \begin{definition}
+ The field extension $K\subset L$ is \emph{transcendental} when there is an alement
+ $a\in L$ transcendental over $K$. We say that $K\subset L$ is \emph{purely
+ transcendental} when $\forall a\in L\setminus K \; a/K$ is transcendental.
+ \end{definition}
+
+ \begin{remark}
+ For $a\in L\supset K$, $a/K$ is transcendental $\Leftrightarrow$ $K(a)\cong K(X)$.
+ \end{remark}
+
+ This remark is quite intuitive: if $K$ cannot say anything about $a$, then it
+ is as esoteric as $X$ from its perspective. I think this remark gives a good
+ framework to work with transcendental extensions and is useful in proofs.
+
+ In the further part of this note we'll give definitions of transcendence
+ basis and algebraic independence, but in an unusual way, as they'll come from
+ model theory and the notion of the algebraic closure.
+
+ From now on imagine that there is a huge algebraically closed field $\cU$, it
+ is bigger than any of the fields in any definition or theorem we'll describe
+ in a moment and we assume that all mentioned fields are contained inside
+ $\cU$ (see \href{https://modeltheory.fandom.com/wiki/Monster_model}{this post
+ on modeltheory.fandom.com}).
+
+ \begin{definition}
+ Let $K\subset \cU$ be a field and $F\subset K$ be the simple field contained
+ in $K$.
+ \begin{enumerate}
+ \item $\acl_K\colon \cP(\cU)\to\cP(\cU)$ is the \emph{algebraic closure
+ operator} over $K$. For a subset $A\subseteq U$ (not necessarily a subfield!)
+ $\acl_K\colon A\mapsto K(A)^{\alg}\subseteq U$.
+ \item $A\subseteq U$ is \emph{algebraically closed over $K$} when $A =
+ \acl_K(A)$.
+ \end{enumerate}
+ \end{definition}
+
+ In general, the algebraic closure of $A$ over $K$ can be defined as the set of elements that
+ have finite type over $K\cup A$ (whatever that means). In the case of fields
+ it's equivalent to being algebraic (hence the name).
+
+ \begin{remark}[Properties of $\acl_K$]
+ \label{remark:acl-props}
+ \mbox{}
+ \begin{enumerate}
+ \item $\acl_K(\emptyset) = K$,
+ \item $A\subseteq \acl_K(A)$,
+ \item $A\subseteq B$ $\Rightarrow$ $\acl_K(A)\subseteq\acl_K(B)$, i.e.
+ $\acl_K$ is monotonic,
+ \item $\acl_K(\acl_K(A)) = \acl_K(A)$, i.e. $\acl_K$ is idempotent,
+ \item $\displaystyle \acl_K(A) = \bigcup_{\underset{\text{finite}}{A_0\subset A}}
+ \acl_K(A_0)$
+ \item (\emph{exchange property}) if
+ $a\in\acl_K(A\cup\{b\})\setminus\acl_K(A)$, then
+ $b\in\acl_K(A\cup\{a\})$.
+ \end{enumerate}
+ \end{remark}
+
+ \begin{definition}
+ \mbox{}
+ \begin{enumerate}
+ \item $A\subset \cU$ is \emph{algebraically independent} over $K$ when
+ $\forall a\in A$ $a\notin \acl_K(A\setminus\{a\})$. This is equivalent
+ to saying that $\forall n\forall \underset{\text{pairwise
+ distinct}}{a_1,\ldots,a_n}\in A$ $\forall W(X_1,\ldots, X_n)\in
+ K[\bar{X}]$ $W(\bar{a}) = 0\Leftrightarrow W = 0$.
+ \item $A$ is a \emph{transcendence basis} of $B\subset U$ over $K$, when
+ $A$ is algebraically independent over $K$ and $A\subseteq B\subseteq
+ \acl_K(A)$.
+ \item $\trdeg_K(B) = $ cardinality of any basis of $B/K$, is the
+ \emph{transcendence degree} of $B$ over $K$.
+ \end{enumerate}
+ \end{definition}
+
+ Of course, the third element is the most controversial. First of all,
+ existance of a transcendence basis is not obvious, not to mention that all
+ transcendence bases have the same cardinality. The next theorem clarifies
+ that.
+
+ \begin{theorem}
+ Let $A\subseteq B\subseteq \cU$ and $A$ algebraically independent over $K$.
+ Then there is $A'$ such that $A\subseteq A'\subseteq B$ such that it is a
+ transcendence basis over $B$. Moreover, all transcendence bases of $B$ over
+ $K$ are equinumerous.
+ \end{theorem}
+
+ The proof of this theorem is quite similar to the proof of the same fact in
+ linear spaces.
+
+ \begin{example}
+ \mbox{}
+ \begin{enumerate}
+ \item Let $K$ be a field, $X_i, i\in I$ be set of variables and $M=K(X_i, i\in
+ I)^{\alg}$. Then $\{X_i,i\in I\}\subseteq M$ is algebraically independent
+ over $K$ and $\trdeg_K(M) = \left|I\right|$.
+ \item Let $K\subseteq L\subseteq \cU$ and $\{a_i,i\in I\}$ be a
+ transcendence basis of $L$ over $K$. Then $K(a_i,i\in I)\cong_K
+ K(X_i,i\in I)$ and $K\underset{\text{purely trans.}}{\subseteq} K(a_i,i\in
+ I)\underset{\text{alg.}}{\subseteq} L$
+ \end{enumerate}
+ \end{example}
+
+ \begin{example}
+ Let us find $\trdeg_\bQ(\bC)$ and the size of $\Aut(\bC)$.
+ \begin{enumerate}
+ \item
+ Let $B\subset \bC$ be transcendence basis of
+ $\bC$ over $\bQ$. Then
+ \[
+ \bC = \bC^{\alg} \\
+ = \acl_\bQ(B) \\
+ \overset{\ref{remark:acl-props}}{=}
+ \bigcup_{\underset{\text{finite}}{B_0\subseteq B}} \acl_\bQ(B_0),
+ \]
+ hence
+ \[
+ 2^{\aleph_0} = \left|\bC\right| =
+ \left|\bigcup_{\underset{\text{finite}}{B_0\subseteq B}}
+ \acl_\bQ(B_0)\right|
+ \le \sum_{\underset{\text{finite}}{B_0\subseteq B}}
+ \left|\acl_\bQ(B_0)\right| = 2^{\aleph_0}.
+ \]
+ The last equality comes from the fact that $\acl_\bQ(B_0)$ is countable
+ comes from the fact that $|\bQ(B_0)| = |\bQ|$ and that the size of the
+ algebraic closure is the size of the field. So, there must be $2^{\aleph_0}$
+ finite subsets of $B$, hence $|B| = 2^{\aleph_0}$.
+ \item
+ From the previous point we know that $\bC = \bQ(b, b\in B)$. But $\bQ(b,
+ b\in B)\cong\bQ(X_b, b\in B)$, so any permutation of $B$ gives another
+ automorphisms of $\bC$. Hence
+ \[
+ 2^{2^{\aleph_0}} = \left|\bC^\bC\right| \ge \left|\Aut(\bC)\right| \ge
+ \left|\Sym(B)\right| = 2^{2^{\aleph_0}}.
+ \]
+ \end{enumerate}
+ \end{example}
\end{document}
diff --git a/semestr2/algebra2r/notatki/sections/norm-and-trace.tex b/semestr2/algebra2r/notatki/sections/norm-and-trace.tex
index dd1c145..e75be20 100644
--- a/semestr2/algebra2r/notatki/sections/norm-and-trace.tex
+++ b/semestr2/algebra2r/notatki/sections/norm-and-trace.tex
@@ -1,4 +1,4 @@
-\documentclass[../notes.tex]{subfiles}
+\documentclass[../notatki.tex]{subfiles}
\begin{document}
Let $V$ be a linear space over $K$ with $\dim V < \infty$, let $f\colon V\to
V$ be linear map, $B\subseteq V$ basis. We denote the determinant of $f$ as
diff --git a/semestr2/algebra2r/notatki/sections/prelim.tex b/semestr2/algebra2r/notatki/sections/prelim.tex
index d3e4b3c..c16bb2c 100644
--- a/semestr2/algebra2r/notatki/sections/prelim.tex
+++ b/semestr2/algebra2r/notatki/sections/prelim.tex
@@ -1,4 +1,4 @@
-\documentclass[../notes.tex]{subfiles}
+\documentclass[../notatki.tex]{subfiles}
\begin{document}
\begin{definition}
Field $K$ is \emph{simple} if it has no proper subfield.
diff --git a/semestr2/algebra2r/notatki/sections/unity-roots.tex b/semestr2/algebra2r/notatki/sections/unity-roots.tex
index e3248c3..b1fde80 100644
--- a/semestr2/algebra2r/notatki/sections/unity-roots.tex
+++ b/semestr2/algebra2r/notatki/sections/unity-roots.tex
@@ -1,4 +1,4 @@
-\documentclass[../notes.tex]{subfiles}
+\documentclass[../notatki.tex]{subfiles}
\begin{document}
\begin{definition}
Let $R$ be a commutative ring with unity.