aboutsummaryrefslogtreecommitdiff
path: root/sections/preliminaries.tex
diff options
context:
space:
mode:
authorFranciszek Malinka <franciszek.malinka@gmail.com>2022-07-10 19:24:51 +0200
committerFranciszek Malinka <franciszek.malinka@gmail.com>2022-07-10 19:24:51 +0200
commit30e20714fa82c6d0d6b1c06b81ebcefdb72e1004 (patch)
tree1d87fa901bb23f34122f60cebcc3edfb23facf62 /sections/preliminaries.tex
parentb3dab8fb10581feca94a76364b2ed4298675dbf8 (diff)
Dodany wstęp po polsku i jakieś tam zmiany
Diffstat (limited to 'sections/preliminaries.tex')
-rw-r--r--sections/preliminaries.tex16
1 files changed, 16 insertions, 0 deletions
diff --git a/sections/preliminaries.tex b/sections/preliminaries.tex
index 729ef1d..266845c 100644
--- a/sections/preliminaries.tex
+++ b/sections/preliminaries.tex
@@ -52,6 +52,22 @@
}x\}$ is comeagre in $X$.
\end{definition}
+ Let $M$ be a structure. We define a topology on the automorphism group
+ $\Aut(M)$ of $M$ by the basis of open sets: for a finite function
+ $f\colon M\to M$ we have a basic open set
+ $[f]_{\Aut(M)} = \{g\in\Aut(M)\mid f\subseteq g\}$. This is a standard
+ definition.
+
+ \begin{fact}
+ For a countable structure $M$, the topological space $\Aut(M)$ is a
+ Baire space.
+ \end{fact}
+
+ This is in fact a very weak statement, it is also true that $\Aut(M)$ is
+ a Polish space (i.e. separable completely metrizable), and every Polish
+ space is Baire. However, those additional properties are not important in
+ this study.
+
\begin{definition}
\label{definition:generic_automorphism}
Let $G = \Aut(M)$ be the automorphism group of structure $M$. We say