diff options
author | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-08-25 22:58:43 +0200 |
---|---|---|
committer | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-08-25 22:58:43 +0200 |
commit | f5708acfd8c521f9c77b18a00b30b05af9d7ceb3 (patch) | |
tree | 4f00f099119a95fd6bd38d2cc349a8df10b7a9bb /sections/conj_classes.tex | |
parent | 5d9c6289189f7db6f5792c4e7387b807e9557920 (diff) |
Added disclaimer
Diffstat (limited to 'sections/conj_classes.tex')
-rw-r--r-- | sections/conj_classes.tex | 8 |
1 files changed, 5 insertions, 3 deletions
diff --git a/sections/conj_classes.tex b/sections/conj_classes.tex index c72fd38..4732e3c 100644 --- a/sections/conj_classes.tex +++ b/sections/conj_classes.tex @@ -242,17 +242,19 @@ \subsection{Properties of the generic automorphism} + This key theorem yields some corollaries and we present one of them below. + Let $\cC$ be a Fraïssé class of finitely generated $L$-structures with weak Hrushovski property and canonical amalgamation. Let $\cD$ be the Fraïssé class (by the Theorem \ref{theorem:key-theorem} of the structures of $\cC$ with additional automorphism of the structure). Let $\Gamma = \Flim(\cC)$. - \begin{proposition} - \label{proposition:fixed_points} + \begin{corollary} + \label{corollary:fixed_points} Let $\sigma$ be the generic automorphism of $\Gamma$. Then the set of fixed points of $\sigma$ is isomorphic to $\Gamma$. - \end{proposition} + \end{corollary} \begin{proof} Let $S = \{x\in \Gamma\mid \sigma(x) = x\}$. It is a substructure of $\Gamma$, |