From f5708acfd8c521f9c77b18a00b30b05af9d7ceb3 Mon Sep 17 00:00:00 2001 From: Franciszek Malinka Date: Thu, 25 Aug 2022 22:58:43 +0200 Subject: Added disclaimer --- sections/conj_classes.tex | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) (limited to 'sections/conj_classes.tex') diff --git a/sections/conj_classes.tex b/sections/conj_classes.tex index c72fd38..4732e3c 100644 --- a/sections/conj_classes.tex +++ b/sections/conj_classes.tex @@ -242,17 +242,19 @@ \subsection{Properties of the generic automorphism} + This key theorem yields some corollaries and we present one of them below. + Let $\cC$ be a Fraïssé class of finitely generated $L$-structures with weak Hrushovski property and canonical amalgamation. Let $\cD$ be the Fraïssé class (by the Theorem \ref{theorem:key-theorem} of the structures of $\cC$ with additional automorphism of the structure). Let $\Gamma = \Flim(\cC)$. - \begin{proposition} - \label{proposition:fixed_points} + \begin{corollary} + \label{corollary:fixed_points} Let $\sigma$ be the generic automorphism of $\Gamma$. Then the set of fixed points of $\sigma$ is isomorphic to $\Gamma$. - \end{proposition} + \end{corollary} \begin{proof} Let $S = \{x\in \Gamma\mid \sigma(x) = x\}$. It is a substructure of $\Gamma$, -- cgit v1.2.3