diff options
author | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-07-10 17:24:08 +0200 |
---|---|---|
committer | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-07-10 17:24:08 +0200 |
commit | b3dab8fb10581feca94a76364b2ed4298675dbf8 (patch) | |
tree | 716ff729435ac5dac351e0780b1001001a736a9b | |
parent | dbe944be2941d04c8391ada2ba6c657be77aea60 (diff) |
Theorem 3.23 fixed (hopefully)
-rw-r--r-- | lic_malinka.pdf | bin | 479640 -> 479547 bytes | |||
-rw-r--r-- | sections/fraisse_classes.tex | 68 | ||||
-rw-r--r-- | uwagi_29_06_22.txt | 8 |
3 files changed, 56 insertions, 20 deletions
diff --git a/lic_malinka.pdf b/lic_malinka.pdf Binary files differindex 57df1b2..d4957dc 100644 --- a/lic_malinka.pdf +++ b/lic_malinka.pdf diff --git a/sections/fraisse_classes.tex b/sections/fraisse_classes.tex index 32804f2..5e45400 100644 --- a/sections/fraisse_classes.tex +++ b/sections/fraisse_classes.tex @@ -486,32 +486,64 @@ Now, take any structures $A, B\in\cC$ such that $A\subseteq B$. Without the loss of generality assume that $A = B\cap \Pi$. Let $\bar{A}\subseteq\Pi$ be the - smallest structure closed under the automorphism $\sigma$ and containing $A$. - It is finite, as $\cC$ is the age of $\Pi$. By the weak Hrushovski property, - of $\cC$ let $(\bar{B}, \beta)$ be a structure extending - $(B\cup \bar{A}, \sigma\upharpoonright_{\bar{A}})$. Again, we may assume - that $B\cup \bar{A}\subseteq \bar{B}$. Then, by the fact that $\Pi$ is a - Fraïssé limit of $\cD$ there is an embedding - $f\colon(\bar{B}, \beta)\to(\Pi, \sigma)$ - such that the following diagram commutes: + smallest substructure closed under the automorphism + $\sigma$ and containing $A$. It is finitely generated, as $\cC$ is the age + of $\Pi$. + Let $C$ be a finitely generated structure such that + $\bar{A}\rightarrow C \leftarrow B$. Such structure exists by the JEP + of $\cC$. Again, we may assume without the loss of generality that + $\bar{A}\subseteq C$. Then $\sigma\upharpoonright_{\bar{A}}$ is a + partial isomorphism of $C$, hence by the WHP it can be extended to + a structure $(\bar{C}, \gamma)\in\cD$ such that + $\gamma\upharpoonright_{\bar{A}} = \sigma\upharpoonright_{\bar{A}}$. + + Then, by the weak ultrahomogeneity of $(\Pi, \sigma)$ we can find an + embedding $g$ of $(\bar{C},\gamma)$ such that the following diagram commutes: + + \begin{center} + \begin{tikzcd} + (\bar{A}, \sigma\upharpoonright_{\bar{A}}) \ar[d, "\subseteq"] \ar[r, "\subseteq"] & (\Pi, \sigma) \\ + (\bar{C}, \gamma) \ar[ur, "g"'] & + \end{tikzcd} + \end{center} - \begin{center} - \begin{tikzcd} - (A, \emptyset) \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & (\bar{A}, \sigma\upharpoonright_A) \arrow[d, "\subseteq"] \arrow[r, "\subseteq"] & (\Pi, \sigma) \\ - (B, \sigma\upharpoonright_B) \arrow[r, dashed, "\subseteq"'] & (\bar{B}, \beta) \arrow[ur, dashed, "f"] - \end{tikzcd} - \end{center} - Then we simply get the following diagram: + Thus, we have that the following diagram commutes: \begin{center} \begin{tikzcd} - A \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & \Pi \\ - B \arrow[ur, dashed, "f\upharpoonright_B"'] + A \ar[r, "\subseteq"] \ar[d, "\subseteq"] & \bar{A} \ar[r, "\subseteq"] \ar[d, "\subseteq"] & \Pi \\ + B \ar[r, "f"] & C \ar[r, "\subseteq"] & \bar{C} \ar[u, "g"] \\ \end{tikzcd} \end{center} - which proves that $\Pi$ is indeed a weakly ultrahomogeneous structure in $\cC$. + % + % By the weak Hrushovski property + % of $\cC$ let $(\bar{B}, \beta)$ be a structure extending + % $(B, \sigma\upharpoonright_{A})$. Again, we may assume + % that $B\cup \bar{A}\subseteq \bar{B}$. Then, by the fact that $\Pi$ is a + % Fraïssé limit of $\cD$ there is an embedding + % $f\colon(\bar{B}, \beta)\to(\Pi, \sigma)$ + % such that the following diagram commutes: + % + % + % \begin{center} + % \begin{tikzcd} + % (A, \emptyset) \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & (\bar{A}, \sigma\upharpoonright_A) \arrow[d, "\subseteq"] \arrow[r, "\subseteq"] & (\Pi, \sigma) \\ + % (B, \sigma\upharpoonright_B) \arrow[r, dashed, "\subseteq"'] & (\bar{B}, \beta) \arrow[ur, dashed, "f"] + % \end{tikzcd} + % \end{center} + + % Then we simply get the following diagram: + % + % \begin{center} + % \begin{tikzcd} + % A \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & \Pi \\ + % B \arrow[ur, dashed, "f\upharpoonright_B"'] + % \end{tikzcd} + % \end{center} + % + which proves that $\Pi$ is indeed a weakly ultrahomogeneous structure. Hence, it is isomorphic to $\Gamma$. \end{proof} \end{document} diff --git a/uwagi_29_06_22.txt b/uwagi_29_06_22.txt index 9f6113d..0512dde 100644 --- a/uwagi_29_06_22.txt +++ b/uwagi_29_06_22.txt @@ -86,11 +86,11 @@ R ⊆ Π, because is the age of Π" nie jest jasne, czemu możesz tak założy - [x] W następnym akapicie "Now, take any structure A, B": structures.
-- [ ] "Let ¯A be the smallest structure closed on the automorphism σ and containg A.": A tylda powinno być podstrukturą Pi i closed under, nie on.
+- [x] "Let ¯A be the smallest structure closed on the automorphism σ and containg A.": A tylda powinno być podstrukturą Pi i closed under, nie on.
- [ ] "By the weak Hrushovski property, of let (¯B,β) be a structure extending (B ∪ ¯A,σ ↾¯A).": to z grubsza działa, ale: B ∪ ¯A nie jest strukturą w C pisanym (musisz użyć JEP). A priori może się zdarzyć nawet tak, że literalnie to nie działa, bo B ∪ ¯A nie ma żadnej kompatybilnej struktury z jakichś głupich powodów, więć powinieneś to zrobićw dwóch krokach (i nie wszystkie strzałki na począku strony 12 muszą być naprawdę włożeniami). Po drugie przecinek po property jest zbędny.
-- [ ] "Π is indeed a weakly ultrahomogeneous structure in " na następnej stronie jest trochę bez sensu. Wiadomo o co Ci chodzi, ale Pi nie jest w C pisanym. Po prostu Pi jest weakly ultrahomogeneous.
+- [x] "Π is indeed a weakly ultrahomogeneous structure in " na następnej stronie jest trochę bez sensu. Wiadomo o co Ci chodzi, ale Pi nie jest w C pisanym. Po prostu Pi jest weakly ultrahomogeneous.
- [ ] Ja bym przeformułował 4.1 jako remark. I napisał, że jest easy to see.
@@ -151,3 +151,7 @@ n and without the loss of generality we may assume that - [x] Dodać że wolna amalgamacja implikuje własność hrushovskiego.
- [ ] Upewnić się, że używam konsekwentnie angielskiego zapisu "meagre", a nie "meager"
+
+- [ ] Poprawić definicję WHP na taką, że to chodzi o finitely generated podstruktury
+
+- [ ] Dodać uwagę, że jak piszę (\Pi, \sigma) to chodzi mi o co innego niż jak piszę \Pi
|