aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorFranciszek Malinka <franciszek.malinka@gmail.com>2022-07-10 17:24:08 +0200
committerFranciszek Malinka <franciszek.malinka@gmail.com>2022-07-10 17:24:08 +0200
commitb3dab8fb10581feca94a76364b2ed4298675dbf8 (patch)
tree716ff729435ac5dac351e0780b1001001a736a9b
parentdbe944be2941d04c8391ada2ba6c657be77aea60 (diff)
Theorem 3.23 fixed (hopefully)
-rw-r--r--lic_malinka.pdfbin479640 -> 479547 bytes
-rw-r--r--sections/fraisse_classes.tex68
-rw-r--r--uwagi_29_06_22.txt8
3 files changed, 56 insertions, 20 deletions
diff --git a/lic_malinka.pdf b/lic_malinka.pdf
index 57df1b2..d4957dc 100644
--- a/lic_malinka.pdf
+++ b/lic_malinka.pdf
Binary files differ
diff --git a/sections/fraisse_classes.tex b/sections/fraisse_classes.tex
index 32804f2..5e45400 100644
--- a/sections/fraisse_classes.tex
+++ b/sections/fraisse_classes.tex
@@ -486,32 +486,64 @@
Now, take any structures $A, B\in\cC$ such that $A\subseteq B$. Without the
loss of generality assume that $A = B\cap \Pi$. Let $\bar{A}\subseteq\Pi$
be the
- smallest structure closed under the automorphism $\sigma$ and containing $A$.
- It is finite, as $\cC$ is the age of $\Pi$. By the weak Hrushovski property,
- of $\cC$ let $(\bar{B}, \beta)$ be a structure extending
- $(B\cup \bar{A}, \sigma\upharpoonright_{\bar{A}})$. Again, we may assume
- that $B\cup \bar{A}\subseteq \bar{B}$. Then, by the fact that $\Pi$ is a
- Fraïssé limit of $\cD$ there is an embedding
- $f\colon(\bar{B}, \beta)\to(\Pi, \sigma)$
- such that the following diagram commutes:
+ smallest substructure closed under the automorphism
+ $\sigma$ and containing $A$. It is finitely generated, as $\cC$ is the age
+ of $\Pi$.
+ Let $C$ be a finitely generated structure such that
+ $\bar{A}\rightarrow C \leftarrow B$. Such structure exists by the JEP
+ of $\cC$. Again, we may assume without the loss of generality that
+ $\bar{A}\subseteq C$. Then $\sigma\upharpoonright_{\bar{A}}$ is a
+ partial isomorphism of $C$, hence by the WHP it can be extended to
+ a structure $(\bar{C}, \gamma)\in\cD$ such that
+ $\gamma\upharpoonright_{\bar{A}} = \sigma\upharpoonright_{\bar{A}}$.
+
+ Then, by the weak ultrahomogeneity of $(\Pi, \sigma)$ we can find an
+ embedding $g$ of $(\bar{C},\gamma)$ such that the following diagram commutes:
+
+ \begin{center}
+ \begin{tikzcd}
+ (\bar{A}, \sigma\upharpoonright_{\bar{A}}) \ar[d, "\subseteq"] \ar[r, "\subseteq"] & (\Pi, \sigma) \\
+ (\bar{C}, \gamma) \ar[ur, "g"'] &
+ \end{tikzcd}
+ \end{center}
- \begin{center}
- \begin{tikzcd}
- (A, \emptyset) \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & (\bar{A}, \sigma\upharpoonright_A) \arrow[d, "\subseteq"] \arrow[r, "\subseteq"] & (\Pi, \sigma) \\
- (B, \sigma\upharpoonright_B) \arrow[r, dashed, "\subseteq"'] & (\bar{B}, \beta) \arrow[ur, dashed, "f"]
- \end{tikzcd}
- \end{center}
- Then we simply get the following diagram:
+ Thus, we have that the following diagram commutes:
\begin{center}
\begin{tikzcd}
- A \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & \Pi \\
- B \arrow[ur, dashed, "f\upharpoonright_B"']
+ A \ar[r, "\subseteq"] \ar[d, "\subseteq"] & \bar{A} \ar[r, "\subseteq"] \ar[d, "\subseteq"] & \Pi \\
+ B \ar[r, "f"] & C \ar[r, "\subseteq"] & \bar{C} \ar[u, "g"] \\
\end{tikzcd}
\end{center}
- which proves that $\Pi$ is indeed a weakly ultrahomogeneous structure in $\cC$.
+ %
+ % By the weak Hrushovski property
+ % of $\cC$ let $(\bar{B}, \beta)$ be a structure extending
+ % $(B, \sigma\upharpoonright_{A})$. Again, we may assume
+ % that $B\cup \bar{A}\subseteq \bar{B}$. Then, by the fact that $\Pi$ is a
+ % Fraïssé limit of $\cD$ there is an embedding
+ % $f\colon(\bar{B}, \beta)\to(\Pi, \sigma)$
+ % such that the following diagram commutes:
+ %
+ %
+ % \begin{center}
+ % \begin{tikzcd}
+ % (A, \emptyset) \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & (\bar{A}, \sigma\upharpoonright_A) \arrow[d, "\subseteq"] \arrow[r, "\subseteq"] & (\Pi, \sigma) \\
+ % (B, \sigma\upharpoonright_B) \arrow[r, dashed, "\subseteq"'] & (\bar{B}, \beta) \arrow[ur, dashed, "f"]
+ % \end{tikzcd}
+ % \end{center}
+
+ % Then we simply get the following diagram:
+ %
+ % \begin{center}
+ % \begin{tikzcd}
+ % A \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & \Pi \\
+ % B \arrow[ur, dashed, "f\upharpoonright_B"']
+ % \end{tikzcd}
+ % \end{center}
+ %
+ which proves that $\Pi$ is indeed a weakly ultrahomogeneous structure.
Hence, it is isomorphic to $\Gamma$.
\end{proof}
\end{document}
diff --git a/uwagi_29_06_22.txt b/uwagi_29_06_22.txt
index 9f6113d..0512dde 100644
--- a/uwagi_29_06_22.txt
+++ b/uwagi_29_06_22.txt
@@ -86,11 +86,11 @@ R ⊆ Π, because is the age of Π" nie jest jasne, czemu możesz tak założy
- [x] W następnym akapicie "Now, take any structure A, B": structures.
-- [ ] "Let ¯A be the smallest structure closed on the automorphism σ and containg A.": A tylda powinno być podstrukturą Pi i closed under, nie on.
+- [x] "Let ¯A be the smallest structure closed on the automorphism σ and containg A.": A tylda powinno być podstrukturą Pi i closed under, nie on.
- [ ] "By the weak Hrushovski property, of let (¯B,β) be a structure extending (B ∪ ¯A,σ ↾¯A).": to z grubsza działa, ale: B ∪ ¯A nie jest strukturą w C pisanym (musisz użyć JEP). A priori może się zdarzyć nawet tak, że literalnie to nie działa, bo B ∪ ¯A nie ma żadnej kompatybilnej struktury z jakichś głupich powodów, więć powinieneś to zrobićw dwóch krokach (i nie wszystkie strzałki na począku strony 12 muszą być naprawdę włożeniami). Po drugie przecinek po property jest zbędny.
-- [ ] "Π is indeed a weakly ultrahomogeneous structure in " na następnej stronie jest trochę bez sensu. Wiadomo o co Ci chodzi, ale Pi nie jest w C pisanym. Po prostu Pi jest weakly ultrahomogeneous.
+- [x] "Π is indeed a weakly ultrahomogeneous structure in " na następnej stronie jest trochę bez sensu. Wiadomo o co Ci chodzi, ale Pi nie jest w C pisanym. Po prostu Pi jest weakly ultrahomogeneous.
- [ ] Ja bym przeformułował 4.1 jako remark. I napisał, że jest easy to see.
@@ -151,3 +151,7 @@ n and without the loss of generality we may assume that
- [x] Dodać że wolna amalgamacja implikuje własność hrushovskiego.
- [ ] Upewnić się, że używam konsekwentnie angielskiego zapisu "meagre", a nie "meager"
+
+- [ ] Poprawić definicję WHP na taką, że to chodzi o finitely generated podstruktury
+
+- [ ] Dodać uwagę, że jak piszę (\Pi, \sigma) to chodzi mi o co innego niż jak piszę \Pi