aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorFranciszek Malinka <franciszek.malinka@gmail.com>2022-07-09 20:05:03 +0200
committerFranciszek Malinka <franciszek.malinka@gmail.com>2022-07-09 20:05:03 +0200
commitdbe944be2941d04c8391ada2ba6c657be77aea60 (patch)
treeaebf49f198780d75bf3fab21775aa7b8a1a7651b
parent78636273b73556313468caf37a938a8a408e4b59 (diff)
updates updates
-rw-r--r--lic_malinka.pdfbin470057 -> 479640 bytes
-rw-r--r--lic_malinka.tex2
-rw-r--r--licmalinka.bib29
-rw-r--r--sections/conj_classes.tex2
-rw-r--r--sections/fraisse_classes.tex207
-rw-r--r--sections/preliminaries.tex1
-rw-r--r--uwagi_29_06_22.txt142
7 files changed, 239 insertions, 144 deletions
diff --git a/lic_malinka.pdf b/lic_malinka.pdf
index 27b5ac3..57df1b2 100644
--- a/lic_malinka.pdf
+++ b/lic_malinka.pdf
Binary files differ
diff --git a/lic_malinka.tex b/lic_malinka.tex
index 7e5c6f4..4532050 100644
--- a/lic_malinka.tex
+++ b/lic_malinka.tex
@@ -59,7 +59,7 @@
\newcommand{\bR}{\mathbb R}
\newcommand{\bZ}{\mathbb Z}
\newcommand{\bQ}{\mathbb Q}
-\newcommand{\bK}{\mathcal K}
+\newcommand{\cK}{\mathcal K}
\newcommand{\FrAut}{\Pi}
\newcommand{\FrGr}{\Gamma}
diff --git a/licmalinka.bib b/licmalinka.bib
index eff2f49..6c1237c 100644
--- a/licmalinka.bib
+++ b/licmalinka.bib
@@ -52,5 +52,32 @@
doi = {https://doi.org/10.1112/plms/pdl007},
year = {2007}
},
-
+@article{extending_iso_graphs,
+ title={http://math.univ-lyon1.fr/~milliet/grapheanglais.pdf},
+ url={http://math.univ-lyon1.fr/~milliet/grapheanglais.pdf},
+ author={Cédric Milliet},
+ year={2004}
+},
+@article{hrushovski_extending_iso,
+ author={Ehud Hrushovski},
+ year={1992},
+ journal={Combinatorica},
+ volume={12},
+ pages={411-416},
+ doi={https://doi.org/10.1007/BF01305233},
+},
+@book{siniora2017automorphism,
+ title={Automorphism Groups of Homogeneous Structures},
+ author={Siniora, D.N.},
+ url={https://books.google.pl/books?id=-qiZtAEACAAJ},
+ year={2017},
+ publisher={University of Leeds (Department of Pure Mathematics)}
+}
+@book{siniora2017automorphism,
+ title={Automorphism Groups of Homogeneous Structures},
+ author={Daoud Nasri Siniora},
+ url={https://core.ac.uk/download/pdf/83934818.pdf},
+ year={2017},
+ publisher={The University of Leeds (Department of Pure Mathematics)}
+}
diff --git a/sections/conj_classes.tex b/sections/conj_classes.tex
index 3e4cb3a..d380df6 100644
--- a/sections/conj_classes.tex
+++ b/sections/conj_classes.tex
@@ -191,7 +191,7 @@
\end{tikzcd}
\end{center}
- Now, by the WHP of $\bK$ we can extend the graph $\Gamma'_n\cup\{v_n\}$ together
+ Now, by the WHP of $\cK$ we can extend the graph $\Gamma'_n\cup\{v_n\}$ together
with its partial isomorphism $g'_n$ to a graph $\Gamma_n$ together with its
automorphism $g_n\supseteq g'_n$ and without the loss of generality we
may assume that $\Gamma_n\subseteq\Gamma$. This way we've constructed $g_n$
diff --git a/sections/fraisse_classes.tex b/sections/fraisse_classes.tex
index dc6392d..32804f2 100644
--- a/sections/fraisse_classes.tex
+++ b/sections/fraisse_classes.tex
@@ -9,26 +9,27 @@
\subsection{Definitions}
\begin{definition}
Let $L$ be a signature and $M$ be an $L$-structure. The \emph{age} of $M$ is
- the class $\bK$ of all finitely generated structures that embed into $M$.
+ the class $\cK$ of all finitely generated structures that embed into $M$.
The age of $M$ is also associated with class of all structures embeddable in
$M$ \emph{up to isomorphism}.
\end{definition}
\begin{definition}
- We say that $M$ has \emph{countable age} when its age has countably many
- isomorphism types of finitely generated structures.
+ We say that a class $\cK$ of finitely generated strcutures
+ is \emph{essentially countable} if it has countably many isomorphism types
+ of finitely generated structures.
\end{definition}
\begin{definition}
- Let $\bK$ be a class of finitely generated structures. $\bK$ has
- \emph{hereditary property (HP)} if for any $A\in\bK$, any finitely generated
- substructure $B$ of $A$ it holds that $B\in\bK$.
+ Let $\cK$ be a class of finitely generated structures. $\cK$ has the
+ \emph{hereditary property (HP)} if for any $A\in\cK$ and any finitely
+ generated substructure $B$ of $A$ it holds that $B\in\cK$.
\end{definition}
\begin{definition}
- Let $\bK$ be a class of finitely generated structures. We say that $\bK$ has
- \emph{joint embedding property (JEP)} if for any $A, B\in\bK$ there is a
- structure $C\in\bK$ such that both $A$ and $B$ embed in $C$.
+ Let $\cK$ be a class of finitely generated structures. We say that $\cK$ has
+ the \emph{joint embedding property (JEP)} if for any $A, B\in\cK$ there is
+ a structure $C\in\cK$ such that both $A$ and $B$ embed in $C$.
\begin{center}
\begin{tikzcd}
@@ -36,27 +37,34 @@
A \arrow[ur, dashed, "f"] & & B \arrow[ul, dashed, "g"']
\end{tikzcd}
\end{center}
-
- In terms of category theory, this is a \emph{span} in category $\bK$.
\end{definition}
- Fraïssé has shown fundamental theories regarding age of a structure, one of
+ In terms of category theory we may say that $\cK$ is a category of finitely
+ generated strcutures where morphims are embeddings of those strcutures.
+ Then the above diagram is a \emph{span} diagram in category $\cK$.
+
+ Fraïssé has shown fundamental theorems regarding age of a structure, one of
them being the following one:
\begin{fact}
\label{fact:age_is_hpjep}
- Suppose $L$ is a signature and $\bK$ is a nonempty finite or countable set
- of finitely generated $L$-structures. Then $\bK$ has the HP and JEP if
- and only if $\bK$ is the age of some finite or countable structure.
+ Suppose $L$ is a signature and $\cK$ is a nonempty essentially countable set
+ of finitely generated $L$-structures. Then $\cK$ has the HP and JEP if
+ and only if $\cK$ is the age of some finite or countable structure.
\end{fact}
+ \begin{proof}
+ One can read a proof of this fact in Wilfrid
+ Hodges' classical book \textit{Model Theory}~\cite[Theorem~7.1.1]{hodges_1993}.
+ \end{proof}
+
Beside the HP and JEP Fraïssé has distinguished one more property of the
- class $\bK$, namely amalgamation property.
+ class $\cK$, namely the amalgamation property.
\begin{definition}
- Let $\bK$ be a class of finitely generated $L$-structures. We say that $\bK$
- has the \emph{amalgamation property (AP)} if for any $A, B, C\in\bK$ and
- embeddings $e\colon C\to A, f\colon C\to B$ there exists $D\in\bK$ together
+ Let $\cK$ be a class of finitely generated $L$-structures. We say that $\cK$
+ has the \emph{amalgamation property (AP)} if for any $A, B, C\in\cK$ and
+ embeddings $e\colon C\to A, f\colon C\to B$ there exists $D\in\cK$ together
with embeddings $g\colon A\to D$ and $h\colon A\to D$ such that
$g\circ e = h\circ f$.
\begin{center}
@@ -68,8 +76,15 @@
\end{center}
\end{definition}
- In terms of category theory, amalgamation over some structure $C$ is a
- pushout diagram.
+ In terms of category theory, $\cK$ has the amalgamation property if every
+ cospan diagram can be extended to a pushout diagram in category $\cK$.
+ We will get into more details later, in the definition of canonical
+ amalgamation \ref{definition:canonical_amalgamation}.
+
+ \begin{definition}
+ Class $\cK$ of finitely generated structure is a \emph{Fraïssé class}
+ if it is essentially countable, has HP, JEP and AP.
+ \end{definition}
\begin{definition}
Let $M$ be an $L$-structure. $M$ is \emph{ultrahomogeneous} if every
@@ -81,20 +96,20 @@
\begin{theorem}[Fraïssé theorem]
\label{theorem:fraisse_thm}
- Let L be a countable language and let $\bK$ be a nonempty countable set of
- finitely generated $L$-structures which has HP, JEP and AP. Then $\bK$ is
+ Let L be a countable language and let $\cK$ be a nonempty countable set of
+ finitely generated $L$-structures which has HP, JEP and AP. Then $\cK$ is
the age of a countable, ultrahomogeneous $L$-structure $M$. Moreover, $M$ is
- unique up to isomorphism. We say that $M$ is a \emph{Fraïssé limit} of $\bK$
- and denote this by $M = \Flim(\bK)$.
+ unique up to isomorphism. We say that $M$ is a \emph{Fraïssé limit} of $\cK$
+ and denote this by $M = \Flim(\cK)$.
\end{theorem}
- This is a well known theorem. One can read a proof of this theorem in Wilfrid
- Hodges' classical book \textit{Model Theory}~\cite{hodges_1993}. In the proof
- of this theorem appears another, equally important \ref{lemma:weak_ultrahom}.
+ \begin{proof}
+ Check the proof in \cite[theorem~7.1.2]{hodges_1993}.
+ \end{proof}
\begin{definition}
We say that an $L$-structure $M$ is \emph{weakly ultrahomogeneous} if for any
- $A, B$ finitely generated substructures of $M$ such that $A\subseteq B$ and
+ $A, B$, finitely generated substructures of $M$, such that $A\subseteq B$ and
an embedding $f\colon A\to M$ there is an embedding $g\colon B\to M$ which
extends $f$.
\begin{center}
@@ -111,29 +126,34 @@
ultrahomogeneous.
\end{lemma}
+ \begin{proof}
+ Proof can be again found in \cite[lemma~7.1.4(b)]{hodges_1993}.
+ \end{proof}
+
This lemma will play a major role in the later parts of the paper. Weak
ultrahomogeneity is an easier and more intuitive property and it will prove
useful when recursively constructing the generic automorphism of a Fraïssé
limit.
- % \begin{fact} If $\bK$ is a uniformly locally finite Fraïssé class, then
- % $\Flim(\bK)$ is $\aleph_0$-categorical and has quantifier elimination.
+ % \begin{fact} If $\cK$ is a uniformly locally finite Fraïssé class, then
+ % $\Flim(\cK)$ is $\aleph_0$-categorical and has quantifier elimination.
% \end{fact}
\subsection{Random graph}
- In this section we'll take a closer look on a class of finite unordered graphs,
+ In this section we'll take a closer look on a class of finite undirected graphs,
which is a Fraïssé class.
- The language of unordered graphs $L$ consists of a single binary
+ The language of undirected graphs $L$ consists of a single binary
relational symbol $E$. If $G$ is an $L$-structure then we call it a
\emph{graph}, and its elements $\emph{vertices}$. If for some vertices
$u, v\in G$ we have $G\models uEv$ then we say that there is an $\emph{edge}$
connecting $u$ and $v$. If $G\models \forall x\forall y (xEy\leftrightarrow yEx)$
- then we say that $G$ is an \emph{unordered graph}. From now on we omit the word
- \textit{unordered} and graphs as unordered.
+ then we say that $G$ is an \emph{undirected graph}. From now on we omit the word
+ \textit{undirected} and consider only undirected graphs.
\begin{proposition}
+ \label{proposition:finite-graphs-fraisse-class}
Let $\cG$ be the class of all finite graphs. $\cG$ is a Fraïssé class.
\end{proposition}
\begin{proof}
@@ -141,9 +161,9 @@
(graph substructure is also a graph). It has JEP: having two finite graphs
$G_1,G_2$ take their disjoint union $G_1\sqcup G_2$ as the extension of them
both. $\cG$ has the AP. Having graphs $A, B, C$, where $B$ and $C$ are
- supergraphs of $A$, we can assume without loss of generality, that
+ supergraphs of $A$, we can assume without loss of generality that
$(B\setminus A) \cap (C\setminus A) = \emptyset$. Then
- $A\sqcup (B\setminus A)\sqcup (C\setminus A)$ is the graph we're looking
+ $A\sqcup (B\setminus A)\sqcup (C\setminus A)$ is the graph we are looking
for (with edges as in B and C and without any edges between $B\setminus A$
and $C\setminus A$).
\end{proof}
@@ -165,17 +185,19 @@
\begin{fact}[random graph property]
For each finite disjoint $X, Y\subseteq \FrGr$ there exists $v\in\FrGr\setminus (X\cup Y)$
- such that $\forall u\in X (vEu)$ and $\forall u\in Y (\neg vEu)$.
+ such that $\forall u\in X$ we have that $\FrGr\models vEu$ and
+ $\forall u\in Y$ We have that $\FrGr\models \neg vEu$.
\end{fact}
\begin{proof}
Take any finite disjoint $X, Y\subseteq\FrGr$. Let $G_{XY}$ be the
subgraph of $\FrGr$ induced by the $X\cup Y$. Let $H = G_{XY}\cup \{w\}$,
where $w$ is a new vertex that does not appear in $G_{XY}$. Also, $w$ is connected to
all vertices of $G_{XY}$ that come from $X$ and to none of those that come
- from $Y$. This graph is of course finite, so it is embeddable in $\FrGr$.
- Without loss of generality assume that this embedding is simply inclusion.
- Let $f$ be the partial isomorphism from $X\sqcup Y$ to $H$, with $X$ and
- $Y$ projected to the part of $H$ that come from $X$ and $Y$ respectively.
+ from $Y$. This graph is of course finite, so it is embeddable in $\FrGr$
+ by some $h\colon H\to \FrGr$.
+ Let $f$ be the partial isomorphism from $X\sqcup Y$ to $h[H]\subseteq\FrGr$,
+ with $X$ and
+ $Y$ projected to the part of $h[H]$ that come from $X$ and $Y$ respectively.
By the ultrahomogeneity of $\FrGr$ this isomorphism extends to an automorphism
$\sigma\in\Aut(\FrGr)$. Then $v = \sigma^{-1}(w)$ is the vertex we sought.
\end{proof}
@@ -189,7 +211,7 @@
= \{b_1, b_2\ldots\}$.
We will construct a chain of partial isomorphisms $f_n\colon \FrGr\to G$
such that $\emptyset = f_0\subseteq f_1\subseteq f_2\subseteq\ldots$ and $a_n \in
- \dom(f_n)$ and $b_n\in\rng(f_n)$.
+ \dom(f_n)$ and $b_n\in\rng(f_n)$ for each $n\in\bN$.
Suppose we have $f_n$. We seek $b\in G$ such that $f_n\cup \{\langle
a_{n+1}, b\rangle\}$ is a partial isomorphism.
@@ -212,10 +234,10 @@
Using this fact one can show that the graph constructed in the probabilistic
manner is in fact isomorphic to the random graph $\FrGr$.
- \begin{definition} We say that a Fraïssé class $\bK$ has \emph{weak
- Hrushovski property} (\emph{WHP}) if for every $A\in \bK$ and an isomorphism
+ \begin{definition} We say that a Fraïssé class $\cK$ has the \emph{weak
+ Hrushovski property} (\emph{WHP}) if for every $A\in \cK$ and an isomorphism
of its substructures $p\colon A\to A$ (also called a partial automorphism of $A$),
- there is some $B\in \bK$ such
+ there is some $B\in \cK$ such
that $p$ can be extended to an automorphism of $B$, i.e.\ there is an
embedding $i\colon A\to B$ and a $\bar p\in \Aut(B)$ such that the following
diagram commutes:
@@ -232,20 +254,61 @@
The class of finite graphs $\cG$ has the weak Hrushovski property.
\end{proposition}
- \begin{proof}
- It may be there some day, but it may not!
- \end{proof}
+ The proof of this proposition can be done directly, in a combinatorial manner,
+ as shown in \cite{extending_iso_graphs}. Hrushovski has also shown
+ in \cite{hrushovski_extending_iso} that
+ finite graphs have stronger property, where each graph can be extended
+ to a supergraph so that every partial automorphism of the graph extend
+ to an automorphism of the supergraph.
+
+ Moreover, there is a theorem saying that every Fraïssé class $\cK$, in a
+ relational language $L$, with \emph{free amalgamation} (see the definition
+ \ref{definition:free_amalgamation} below) has WHP. The statement and
+ proof of this theorem can be found in
+ \cite[theorem 3.2.8]{siniora2017automorphism}. We provide the definition
+ of free amalgamation that is coherent with the notions established
+ in our paper.
+
+ \begin{definition}
+ \label{definition:free_amalgamation}
+ Let $L$ be a relational language and $\cK$ a class of $L$-strucutres.
+ $\cK$ has \emph{free amalgamation} if for every
+ $A, B, C\in\cK$ such that $C = A\cap B$ the following diagram commutes:
+ \begin{center}
+ \begin{tikzcd}
+ & A\sqcup B & \\
+ A \ar[ur, hook] & & B \ar[ul, hook'] \\
+ & C \ar[ur, hook] \ar[ul, hook'] &
+ \end{tikzcd}
+ \end{center}
+
+ $A\sqcup B$ here is an $L$-strcuture with domain $A\cup B$ such that
+ for every $n$-ary symbol $R$ from $L$, $n$-tuple $\bar{a}\subseteq A\cup B$,
+ we have that $A\sqcup B\models R(\bar{a})$ if and only if [$\bar{a}\subseteq A$ and
+ $A\models R(\bar{a})$] or [$\bar{a}\subseteq B$ and $B\models R(\bar{a})$].
+ \end{definition}
+
+ Actually we did already implicitly worked with free amalgamation in the
+ proposition \ref{proposition:finite-graphs-fraisse-class}, showing that
+ the class of finite strcuture is indeed a Fraïssé class.
+
\subsection{Canonical amalgamation}
+ Recall, $\Cospan(\cC)$, $\Pushout(\cC)$ are the categories of cospan
+ and pushout diagrams of the category $\cC$. We have also denoted the notion
+ of cospans and pushouts with a fixed base structure $C$ denoted
+ as $\Cospan_C(\cC)$ and $Pushout_C(\cC)$.
+
\begin{definition}
- Let $\bK$ be a class finitely generated $L$-structures. We say that
- $\bK$ has \emph{canonical amalgamation} if for every $C\in\bK$ there
- is a functor $\otimes_C\colon\Cospan(\bK)\to\Pushout(\bK)$ such that
+ \label{definition:canonical_amalgamation}
+ Let $\cK$ be a class finitely generated $L$-structures. We say that
+ $\cK$ has \emph{canonical amalgamation} if for every $C\in\cK$ there
+ is a functor $\otimes_C\colon\Cospan_C(\cK)\to\Pushout_C(\cK)$ such that
it has the following properties:
\begin{itemize}
\item Let $A\leftarrow C\rightarrow B$ be a cospan. Then $\otimes_C$ sends
- it to a pushout that preserves ``the bottom`` structures and embeddings, i.e.:
+ it to a pushout that preserves ``the bottom'' structures and embeddings, i.e.:
\begin{center}
\begin{tikzcd}
& & & & A\otimes_C B & \\
@@ -258,10 +321,9 @@
the functor has to take them into account, but this abuse of notation
is convenient and should not lead into confusion.
\item Let $A\leftarrow C\rightarrow B$, $A'\leftarrow C\rightarrow B'$ be cospans
- with a natural transformation given by $\alpha\colon A\to A', \beta\colon B\to B',
- \gamma\colon C\to C$. Then $\otimes_C$ preserves the morphisms of
- when sending the natural transformation of those cospans to natural
- transformation of pushouts by adding the
+ with a natural transformation $\eta$ given by $\alpha\colon A\to A', \beta\colon B\to B',
+ \gamma\colon C\to C$. Then $\otimes_C$ preserves the morphisms of $\eta$
+ when sending it to the natural transformation of pushouts by adding the
$\delta\colon A\otimes_C B\to A'\otimes_C B'$ morphism:
\begin{center}
@@ -286,7 +348,7 @@
\begin{theorem}
\label{theorem:canonical_amalgamation_thm}
- Let $\bK$ be a Fraïssé class of $L$-structures with canonical amalgamation.
+ Let $\cK$ be a Fraïssé class of $L$-structures with canonical amalgamation.
Then the class $\cH$ of $L$-structures with automorphism is a Fraïssé class.
\end{theorem}
@@ -328,7 +390,7 @@
\end{proof}
\subsection{Graphs with automorphism}
- The language and theory of unordered graphs is fairly simple. We extend the
+ The language and theory of undirected graphs is fairly simple. We extend the
language by one unary symbol $\sigma$ and interpret it as an arbitrary
automorphism on the graph structure. It turns out that the class of such
structures is a Fraïssé class.
@@ -350,21 +412,23 @@
the proof for the plain graphs. We will define the automorphism
$\delta\in\Aut(D)$ so it extends $\beta$ and $\gamma$.
We let $\delta\upharpoonright_B = \beta, \delta\upharpoonright_C = \gamma$.
- Let's check the definition is correct. We have to show that
+
+ Let us check that the definition is correct. We have to show that
$(uE_Dv\leftrightarrow \delta(u)E_D\delta(v))$ holds for any $u, v\in
D$. We have two cases:
\begin{itemize}
\item $u, v\in X$, where $X$ is either $B$ or $C$. This case is trivial.
\item $u\in B\setminus A, v\in C\setminus A$. Then
$\delta(u)=\beta(u)\in B\setminus A$, similarly $\delta(v)=\gamma(v)\in
- C\setminus A$. This follows from the fact, that $\beta\upharpoonright_A
- = \alpha$, so for any $w\in A\quad\beta^{-1}(w)=\alpha^{-1}(w)\in A$,
+ C\setminus A$. This follows from the fact that $\beta\upharpoonright_A
+ = \alpha$, so for any $w\in A$ it holds that
+ $\beta^{-1}(w)=\alpha^{-1}(w)\in A$,
similarly for $\gamma$. Thus, from the construction of $D$, $\neg uE_Dv$
and $\neg \delta(u)E_D\delta(v)$.
\end{itemize}
\end{proof}
- The proposition says that there is a Fraïssé for the class $\cH$ of finite
+ The proposition says that there is a Fraïssé limit for the class $\cH$ of finite
graphs with automorphisms. We shall call it $(\FrAut, \sigma)$. Not
surprisingly, $\FrAut$ is in fact a random graph.
@@ -401,9 +465,8 @@
\begin{theorem}
\label{theorem:isomorphic_fr_lims}
- Let $\cC$ be a Fraïssé class of finite structures in a relational language
- $L$ of some theory $T$. Let $\cD$ be a class of finite structures of the
- theory $T$ in a relational language $L$ with additional unary function
+ Let $\cC$ be a Fraïssé class of finitely generated $L$-structures.
+ Let $\cD$ be the class of structures from $\cC$ with additional unary function
symbol interpreted as an automorphism of the structure. If $\cC$ has the
weak Hrushovski property and $\cD$ is a Fraïssé class then the Fraïssé
limit of $\cC$ is isomorphic to the Fraïssé limit of $\cD$ reduced
@@ -413,15 +476,17 @@
\begin{proof}
Let $\Gamma=\Flim(\cC)$ and $(\Pi, \sigma) =\Flim(\cD)$. By the Fraïssé
theorem \ref{theorem:fraisse_thm} it suffices to show that the age of $\Pi$
- is $\cC$ and that it has the weak ultrahomogeneity in the class $\cC$. The
+ is $\cC$ and that it is weakly ultrahomogeneous. The
former comes easily, as for every structure $A\in \cC$ we have the structure
$(A, \id_A)\in \cD$, which means that the structure $A$ embeds into $\Pi$.
- Also, if a structure $(B, \beta)\in\cD$ embeds into $\cD$, then $B\in\cC$.
+ On the other hand, if a structure $(B, \beta)\in\cD$ embeds into
+ $(\Pi, \sigma)$, then obviously $B\in\cC$ by the definition of $\cD$.
Hence, $\cC$ is indeed the age of $\Pi$.
- Now, take any structure $A, B\in\cC$ such that $A\subseteq B$. Without the
- loss of generality assume that $A = B\cap \Pi$. Let $\bar{A}$ be the
- smallest structure closed on the automorphism $\sigma$ and containing $A$.
+ Now, take any structures $A, B\in\cC$ such that $A\subseteq B$. Without the
+ loss of generality assume that $A = B\cap \Pi$. Let $\bar{A}\subseteq\Pi$
+ be the
+ smallest structure closed under the automorphism $\sigma$ and containing $A$.
It is finite, as $\cC$ is the age of $\Pi$. By the weak Hrushovski property,
of $\cC$ let $(\bar{B}, \beta)$ be a structure extending
$(B\cup \bar{A}, \sigma\upharpoonright_{\bar{A}})$. Again, we may assume
diff --git a/sections/preliminaries.tex b/sections/preliminaries.tex
index 47e889e..729ef1d 100644
--- a/sections/preliminaries.tex
+++ b/sections/preliminaries.tex
@@ -374,6 +374,7 @@
is the \emph{base} of the diagram.
\begin{definition}
+ \label{definition:cospan_pushout}
The \emph{cospan category} of category $\cC$, referred to as $\Cospan(\cC)$,
is the category of cospan diagrams of $\cC$, where morphisms between
two cospans are natural transformations of the underlying functors.
diff --git a/uwagi_29_06_22.txt b/uwagi_29_06_22.txt
index 0784538..9f6113d 100644
--- a/uwagi_29_06_22.txt
+++ b/uwagi_29_06_22.txt
@@ -1,136 +1,136 @@
-1. Coś ogólnie o teorii modeli, jakiś odsyłacz do literatury. We sekcji 2.1 też możesz powiedzieć, że poniższe pojęcia i fakty są standardowe i odesłać do Kechrisa po szerszą ekspozycję.
+- [x] Coś ogólnie o teorii modeli, jakiś odsyłacz do literatury. We sekcji 2.1 też możesz powiedzieć, że poniższe pojęcia i fakty są standardowe i odesłać do Kechrisa po szerszą ekspozycję.
-2. Na pierwszej stronie "another example is..." niepotrzebne.
+- [x] Na pierwszej stronie "another example is..." niepotrzebne.
-3. Zdefiniuj konkretnie co to jest generyczny automorfizm (to trochę definicji 2.4, ale nie do końca, poza tym to jest na kluczowe pojęcie).
+- [x] Zdefiniuj konkretnie co to jest generyczny automorfizm (to trochę definicji 2.4, ale nie do końca, poza tym to jest na kluczowe pojęcie).
-4. Ostatnie zdanie definicji 2.6 jest niezrozumiałe. T to jest konkretne drzewo, a nie jakieś pruned tree.
+- [x] Ostatnie zdanie definicji 2.6 jest niezrozumiałe. T to jest konkretne drzewo, a nie jakieś pruned tree.
-5. W definicji 2.10 używasz słowa "game". Skomentuj to jakoś wcześniej.
+- [x] W definicji 2.10 używasz słowa "game". Skomentuj to jakoś wcześniej.
-6. W definicji 2.12, we think -> we put.
+- [x] W definicji 2.12, we think -> we put.
-7. W dowodzie 2.13: possible player I’s move -> possible move of player I.
+- [x] W dowodzie 2.13: possible player I’s move -> possible move of player I.
-8. W sformułowaniu 2.14 lepiej zdefiniować S_n przed (ii) (a potem użyć opcji resume do enumerate).
+- [x] W sformułowaniu 2.14 lepiej zdefiniować S_n przed (ii) (a potem użyć opcji resume do enumerate).
-9. We've -> we have
+- [x] We've -> we have
-10. W dowodzie 2.15 "take for $V_n$"
+- [x] W dowodzie 2.15 "take for $V_n$"
-11. Po 2.15: any open sets -> arbitrary open sets.
+- [x] Po 2.15: any open sets -> arbitrary open sets.
-12. Błąd w tytule [2]. Oraz "in detailed introduction" -> "in a detailed introduction". Może też dopisać "more detailed"?
+- [x] Błąd w tytule [2]. Oraz "in detailed introduction" -> "in a detailed introduction". Może też dopisać "more detailed"?
-13. W definicji kategorii: "We require that for each morphisms" - pair of morphisms. O identyczności: " it follows that" -> "we have that" (to nie wynika z niczego, to jest aksjomat).
+- [x] W definicji kategorii: "We require that for each morphisms" - pair of morphisms. O identyczności: " it follows that" -> "we have that" (to nie wynika z niczego, to jest aksjomat).
-14. Funktor jest (homo)morfizmem (nie homeomorfizmem) kategorii. Homeomorfizmy dotyczą przestrzeni topologicznych.
+- [x] Funktor jest (homo)morfizmem (nie homeomorfizmem) kategorii. Homeomorfizmy dotyczą przestrzeni topologicznych.
-15. "Here, we only consider covariant functors" niepotrzebna emfaza na covariant functors.
+- [x] "Here, we only consider covariant functors" niepotrzebna emfaza na covariant functors.
-16. "Notion" -> "A notion".
+- [x] "Notion" -> "A notion".
-17. W definicji 2.18 emfaza powinna złapać diagram (to co definiujesz to jest "pushout diagram").
+- [x] W definicji 2.18 emfaza powinna złapać diagram (to co definiujesz to jest "pushout diagram").
-18. Tak naprawdę dalej nie pracujesz w pełnej kategorii kospanów i pushout diagramów, tylko w podkategorii w której masz ustaloną bazę i morfizmy w niej to są izomorfizmy. Zdefiniuj je.
+- [ ] Tak naprawdę dalej nie pracujesz w pełnej kategorii kospanów i pushout diagramów, tylko w podkategorii w której masz ustaloną bazę i morfizmy w niej to są izomorfizmy. Zdefiniuj je.
-19. Nie jestem pewien jaki przykład byś chciał dodać.
+- [x] Nie jestem pewien jaki przykład byś chciał dodać.
-20. W definicji 2.19: normal transformations -> natural transformations.
+- [x] W definicji 2.19: normal transformations -> natural transformations.
-21. W definicji 3.2 mówi się raczej "essentially countable". (Ale czy ta definicja na pewno jest potrzebna? Raczej bardziej przydatna jest definicja tego, że K jest essentially countable.) Swoją drogą, jeżeli chcesz się odwoływać do Hodgesa, lepiej zdefiniuj Age jako wszystkie skończenie generowane struktury wkładające się (Hodges tak definiuje Age).
+- [x] W definicji 3.2 mówi się raczej "essentially countable". (Ale czy ta definicja na pewno jest potrzebna? Raczej bardziej przydatna jest definicja tego, że K jest essentially countable.) Swoją drogą, jeżeli chcesz się odwoływać do Hodgesa, lepiej zdefiniuj Age jako wszystkie skończenie generowane struktury wkładające się (Hodges tak definiuje Age).
-22. W definicji 3.3 może "and" zamiast pierwszego przecinka?
+- [x] W definicji 3.3 może "and" zamiast pierwszego przecinka?
-23. W definicji 3.3 i 3.4 "the" hereditary property i "the" joint embedding property.
+- [x] W definicji 3.3 i 3.4 "the" hereditary property i "the" joint embedding property.
-24. Kiedy mówisz o klasie Fraissego jako o kategorii (mówiąc o spanach), powiedz to jasno, że to właśnie robisz (tzn. rozpatrujesz klasę K jako kategorię z włożeniami jako morfizmami).
+- [x] Kiedy mówisz o klasie Fraissego jako o kategorii (mówiąc o spanach), powiedz to jasno, że to właśnie robisz (tzn. rozpatrujesz klasę K jako kategorię z włożeniami jako morfizmami).
-25. "has shown fundamental theories" nie ma sensu. Pewnie chciałeś napisać "theorems".
+- [x] "has shown fundamental theories" nie ma sensu. Pewnie chciałeś napisać "theorems".
-26. "In terms of category theory, amalgamation over some structure C is
+- [x] "In terms of category theory, amalgamation over some structure C is
a pushout diagram." To jest bez sensu. Chciałeś pewnie napisać, że każdy cospan nad C można dopełnić do pushout diagramu nad C.
-27. Daj bardziej konkretne cytowanie dla Twierdzenia 3.8. (Theorem 7.1.2 w Hodgesie którego mam.) Podobnie dla 3.5 i 3.10.
+- [x] Daj bardziej konkretne cytowanie dla Twierdzenia 3.8. (Theorem 7.1.2 w Hodgesie którego mam.) Podobnie dla 3.5 i 3.10.
-28. Ogólnie w Hodgesie są pewne niezręczności, w zasadzie błędy. Twierdzenie 3.7.2 z Hodgesa literalnie tak jak stoi jest fałszywe (np. w definicji Age jaką daje Hodges, Age z zupełnie głupich powodów jest właściwą klasą, więc nie jest równe żadnemu przeliczalnemu zbiorowi). Sugeruję następującą poprawkę: w definicji Age napisz że to struktury które się wkładają, a w twierdzeniu 3.8 napisz że Age składa się ze struktur izomorficznych z tymi z K (albo równoważnie, założyć że K jest essentially finite or countable i zamknięte na izomorfizmy). W fakcie 3.5 jest podobny defekt: trzeba napisać, że K jest z dokładnością do izomorfizmu.
+- [x] Ogólnie w Hodgesie są pewne niezręczności, w zasadzie błędy. Twierdzenie 3.7.2 z Hodgesa literalnie tak jak stoi jest fałszywe (np. w definicji Age jaką daje Hodges, Age z zupełnie głupich powodów jest właściwą klasą, więc nie jest równe żadnemu przeliczalnemu zbiorowi). Sugeruję następującą poprawkę: w definicji Age napisz że to struktury które się wkładają, a w twierdzeniu 3.8 napisz że Age składa się ze struktur izomorficznych z tymi z K (albo równoważnie, założyć że K jest essentially finite or countable i zamknięte na izomorfizmy). W fakcie 3.5 jest podobny defekt: trzeba napisać, że K jest z dokładnością do izomorfizmu.
-29. W definicji 3.9 w "A, B finitely generated substructures of M" powinien być przecinek po B i po M lub A, B powinno być po substructures "finitely generated substructures A, B of M".
+- [x] W definicji 3.9 w "A, B finitely generated substructures of M" powinien być przecinek po B i po M lub A, B powinno być po substructures "finitely generated substructures A, B of M".
-30. Brakuje definicji klasy Fraissego.
+- [x] Brakuje definicji klasy Fraissego.
-31. "From now on we omit the word unordered and graphs as unordered." tu chyba brakuje słówka. W ogóle czy nie chodziło Ci o "undirected"?
+- [x] "From now on we omit the word unordered and graphs as unordered." tu chyba brakuje słówka. W ogóle czy nie chodziło Ci o "undirected"?
-32. Przecinek w "we can assume without loss of generality, that" jest chyba zbędny.
+- [x] Przecinek w "we can assume without loss of generality, that" jest chyba zbędny.
-33. "We're" -> "We are".
+- [x] "We're" -> "We are".
-34. Dowód faktu 3.13 chyba można uprościć korzystająć z weak homogeneity. W każdym razie tak jak stoi nie jest do końca poprawny, bo X i Y są już dane jako podgrafy Gammy, więc nie możesz od razu załozyć, że włożenie H to inkluzja.
+- [x] Dowód faktu 3.13 chyba można uprościć korzystająć z weak homogeneity. W każdym razie tak jak stoi nie jest do końca poprawny, bo X i Y są już dane jako podgrafy Gammy, więc nie możesz od razu załozyć, że włożenie H to inkluzja.
-35. W pierwszym akapicie "and an ∈ dom(fn) and bn ∈ rng(fn)." brakuje "for each n".
+- [x] W pierwszym akapicie "and an ∈ dom(fn) and bn ∈ rng(fn)." brakuje "for each n".
-36. Dodaj źrodło dla 3.16 (możesz też odwołać się do faktu którego jeszcze nie wpisałeś, że klasy z wolną amalgamacją mają własność Hrushovskiego i że grafy oczywiście ją mają).
+- [x] Dodaj źrodło dla 3.16 (możesz też odwołać się do faktu którego jeszcze nie wpisałeś, że klasy z wolną amalgamacją mają własność Hrushovskiego i że grafy oczywiście ją mają).
-37. Tak jak pisałem wcześniej, kanoniczna amalgamacja źródłowo ma nie pełną kategorię kospanów, tylko kospany nad C (z morfizmami dającymi automorfizmy C).
+- [x] Tak jak pisałem wcześniej, kanoniczna amalgamacja źródłowo ma nie pełną kategorię kospanów, tylko kospany nad C (z morfizmami dającymi automorfizmy C).
-38. Drugi punkt definicji 3.17 to nie jest część definicji, tylko jej konsekwencja (ta delta przyhodzi z samej funktorialności).
+- [x] Drugi punkt definicji 3.17 to nie jest część definicji, tylko jej konsekwencja (ta delta przyhodzi z samej funktorialności).
-39. W dowodzie 3.19 "Let’s check the" -> "Let us check that the". Też tam przecinek w "This follows from the fact, that" jest zbędny. Po "w ∈ A" wtrąć coś (np. "we have that" "it holds that"), taki ciąg znaczków jest nieczytelny
+- [x] W dowodzie 3.19 "Let’s check the" -> "Let us check that the". Też tam przecinek w "This follows from the fact, that" jest zbędny. Po "w ∈ A" wtrąć coś (np. "we have that" "it holds that"), taki ciąg znaczków jest nieczytelny
-40. "The proposition says that there is a Fraïssé". Brakuje słówka limit (i odwołania do twierdzenia Fraissego).
+- [x] "The proposition says that there is a Fraïssé". Brakuje słówka limit (i odwołania do twierdzenia Fraissego).
-41. W dowodzie 3.20 jak piszesz "Once again, without the loss of generality we can assume that
+- [ ] W dowodzie 3.20 jak piszesz "Once again, without the loss of generality we can assume that
R ⊆ Π, because is the age of Π" nie jest jasne, czemu możesz tak założyć (R ma już podzbiór XY który siedzi w Π w jakiś ustalony sposób!). Nie widzę jak by to uzasadnić bez zakładania tezy. Tak naprawdę chcesz ustalić podgraf R' izomorficzny z R (jako graf za automorfizmem!). W tym samym miejscu "graph R with automorphism" -> "graph R with an automorphism".
-42. Na końcu pierwszego akapitu dowodu 3.21: "Also, if a structure (B,β) ∈ embedds into ": embeds, poza tym to nie ma sensu (co to znaczy że wkłada się w klasę Fraissego?). Po prostu z definicji klasy D pisane B jest w C pisanym.
+- [x] Na końcu pierwszego akapitu dowodu 3.21: "Also, if a structure (B,β) ∈ embedds into ": embeds, poza tym to nie ma sensu (co to znaczy że wkłada się w klasę Fraissego?). Po prostu z definicji klasy D pisane B jest w C pisanym.
-43. W następnym akapicie "Now, take any structure A, B": structures.
+- [x] W następnym akapicie "Now, take any structure A, B": structures.
-44. "Let ¯A be the smallest structure closed on the automorphism σ and containg A.": A tylda powinno być podstrukturą Pi i closed under, nie on.
+- [ ] "Let ¯A be the smallest structure closed on the automorphism σ and containg A.": A tylda powinno być podstrukturą Pi i closed under, nie on.
-45. "By the weak Hrushovski property, of let (¯B,β) be a structure extending (B ∪ ¯A,σ ↾¯A).": to z grubsza działa, ale: B ∪ ¯A nie jest strukturą w C pisanym (musisz użyć JEP). A priori może się zdarzyć nawet tak, że literalnie to nie działa, bo B ∪ ¯A nie ma żadnej kompatybilnej struktury z jakichś głupich powodów, więć powinieneś to zrobićw dwóch krokach (i nie wszystkie strzałki na począku strony 12 muszą być naprawdę włożeniami). Po drugie przecinek po property jest zbędny.
+- [ ] "By the weak Hrushovski property, of let (¯B,β) be a structure extending (B ∪ ¯A,σ ↾¯A).": to z grubsza działa, ale: B ∪ ¯A nie jest strukturą w C pisanym (musisz użyć JEP). A priori może się zdarzyć nawet tak, że literalnie to nie działa, bo B ∪ ¯A nie ma żadnej kompatybilnej struktury z jakichś głupich powodów, więć powinieneś to zrobićw dwóch krokach (i nie wszystkie strzałki na począku strony 12 muszą być naprawdę włożeniami). Po drugie przecinek po property jest zbędny.
-46. "Π is indeed a weakly ultrahomogeneous structure in " na następnej stronie jest trochę bez sensu. Wiadomo o co Ci chodzi, ale Pi nie jest w C pisanym. Po prostu Pi jest weakly ultrahomogeneous.
+- [ ] "Π is indeed a weakly ultrahomogeneous structure in " na następnej stronie jest trochę bez sensu. Wiadomo o co Ci chodzi, ale Pi nie jest w C pisanym. Po prostu Pi jest weakly ultrahomogeneous.
-47. Ja bym przeformułował 4.1 jako remark. I napisał, że jest easy to see.
+- [ ] Ja bym przeformułował 4.1 jako remark. I napisał, że jest easy to see.
-48. W dowodzie 4.2: "Let Bn,k be the set of all finite functions β: M → M that consists of " consist of (to funkcje się z nich składają, a nie Bn,k).
+- [ ] W dowodzie 4.2: "Let Bn,k be the set of all finite functions β: M → M that consists of " consist of (to funkcje się z nich składają, a nie Bn,k).
-49. Pod koniec dowodu: "It is a sum over basic open sets generated by finite permutations with m in their domain." -> It is an union.
+- [ ] Pod koniec dowodu: "It is a sum over basic open sets generated by finite permutations with m in their domain." -> It is an union.
-50. W fakcie 4.3: additional unary function, nie relation. W dowodzie 4.3 zdanie "Then g is the
+- [ ] W fakcie 4.3: additional unary function, nie relation. W dowodzie 4.3 zdanie "Then g is the
automorphism we’re looking for." jest trochę mętne. Nie wiadomo po co szukamy automorfizmu.
-51. "This strategy will give us a subset A ⊆ G and as we will see a subset of a cojugacy class in G." Chyba nie tyle jakiejś klasy sprzężoności, co klasy sprzężoności sigmy (jednej ustalonej).
+- [ ] "This strategy will give us a subset A ⊆ G and as we will see a subset of a cojugacy class in G." Chyba nie tyle jakiejś klasy sprzężoności, co klasy sprzężoności sigmy (jednej ustalonej).
-52. "From now on we will consider only finite partial isomorphism g such that Bg is nonempty.": isomorphisms g. Poza tym czy to nie jest zawsze niepuste z ultrajednorodnosci? Jeżeli nie, to może wytłumacz dlaczego, a jeżeli tak, to napisz to (zamiast tego zdania).
+- [ ] "From now on we will consider only finite partial isomorphism g such that Bg is nonempty.": isomorphisms g. Poza tym czy to nie jest zawsze niepuste z ultrajednorodnosci? Jeżeli nie, to może wytłumacz dlaczego, a jeżeli tak, to napisz to (zamiast tego zdania).
-53. W następnym akapicie chyba nie powinno być przecinka po games.
+- [ ] W następnym akapicie chyba nie powinno być przecinka po games.
-54. To zdanie jest trochę nieskładne: "Precisely,"i=0 Bgi = {g}, by the Fraïssé theorem 3.8 it will follow that (Γ, g) ∼= (Π,σ)."
+- [ ] To zdanie jest trochę nieskładne: "Precisely,"i=0 Bgi = {g}, by the Fraïssé theorem 3.8 it will follow that (Γ, g) ∼= (Π,σ)."
-55. W następnym zdaniu Fact powinno być wielką literą (i bez the). Generalnie jak odwołujesz się do numerowanych faktów/twierdzeń/definicji, to raczej pisz wielką literą i bez rodzajników. Np. "By the Fraisse theorem (i.e. Theorem 3.8)" albo "By Theorem 3.8 (the Fraisse theorem)".
+- [ ] W następnym zdaniu Fact powinno być wielką literą (i bez the). Generalnie jak odwołujesz się do numerowanych faktów/twierdzeń/definicji, to raczej pisz wielką literą i bez rodzajników. Np. "By the Fraisse theorem (i.e. Theorem 3.8)" albo "By Theorem 3.8 (the Fraisse theorem)".
-56. To zdanie: "Once again, by the Fraïssé theorem 3.8 and the 3.10 lemma con-
+- [ ] To zdanie: "Once again, by the Fraïssé theorem 3.8 and the 3.10 lemma con-
structing gi’s in a way such that age of (Γ, g) is exactly and so that
it is weakly ultrahomogeneous will produce expected result." też jest trochę nieskładne (plus uwagi jak wyżej).
-57. To też: "This will prove useful later, as the main argument of the proof will be
+- [ ] To też: "This will prove useful later, as the main argument of the proof will be
constructed as a bookkeeping argument." Może: "This will prove useful later, as the main ingredient of the proof will be a bookkeping argument".
-58. Zamiast "Just for sake of fixing a technical problem," lepiej napisać "For technical reasons,".
+- [ ] Zamiast "Just for sake of fixing a technical problem," lepiej napisać "For technical reasons,".
-59. "We will construct gn" dopisz "a finite partial automorphism".
+- [ ] "We will construct gn" dopisz "a finite partial automorphism".
-60. Wyjaśnij co rozumiesz przez "substructure induced by g_n" (tu możesz też powiedzieć, że to Gamma_n).
+- [ ] Wyjaśnij co rozumiesz przez "substructure induced by g_n" (tu możesz też powiedzieć, że to Gamma_n).
-61. Ogólnie (iii) jest trochę trudna do przeczytania. Może najpierw zadeklaruj co to jest Gamma_n i przed (i) przypomnij, że f_n z założenia rozszerza g_{n-1}.". Tak naprawdę żeby to miało sens, to w trakcie konstrukcji tworzysz też te numeracje. Ogólnie to jest trochę mętne, bo brzmi jakby Twój wybór g_n zależał tylko of f_n, a tak naprawdę zależy od wszystkiego tego co było wcześniej (w szczególności zbiór X_{n-1}
+- [ ] Ogólnie (iii) jest trochę trudna do przeczytania. Może najpierw zadeklaruj co to jest Gamma_n i przed (i) przypomnij, że f_n z założenia rozszerza g_{n-1}.". Tak naprawdę żeby to miało sens, to w trakcie konstrukcji tworzysz też te numeracje. Ogólnie to jest trochę mętne, bo brzmi jakby Twój wybór g_n zależał tylko of f_n, a tak naprawdę zależy od wszystkiego tego co było wcześniej (w szczególności zbiór X_{n-1}
-61. "we will suffice the item": "suffice" tu nie ma sensu. Czy chciałeś napisać "satisfy"?
+- [ ] "we will suffice the item": "suffice" tu nie ma sensu. Czy chciałeś napisać "satisfy"?
-62. W drugim diagramie na str. 16 nie powinno być automorfizmów po lewej stronie (bo po prawej nie ma).
+- [ ] W drugim diagramie na str. 16 nie powinno być automorfizmów po lewej stronie (bo po prawej nie ma).
-63. "Now, by the WHP of we can extend the graph Γ′
+- [ ] "Now, by the WHP of we can extend the graph Γ′
n ∪ {vn} together
with its partial isomorphism g′
n to a graph Γn together with its automor-
@@ -138,14 +138,16 @@ phism gn ⊇ g′
n and without the loss of generality we may assume that
Γn ⊆ Γ.": tutaj na końcu znów korzystasz z weak ultrahomogeneity.
-64. Na końcu tego akapitu znowu sum zamiast union jest. Ponadto "an increasing chain" (rodzajnik).
+- [ ] Na końcu tego akapitu znowu sum zamiast union jest. Ponadto "an increasing chain" (rodzajnik).
-65. "With a similar argument we can see that (Γ, g) is weakly ultrahomogeneous." to trochę oszustwo, wytłumacz to nieco dokładniej.
+- [ ] "With a similar argument we can see that (Γ, g) is weakly ultrahomogeneous." to trochę oszustwo, wytłumacz to nieco dokładniej.
-66. Po 4.4 powinien być wniosek, że kanoniczna amalgamacja+whp dają konkluzję 4.4, a potem z tego, że wolna amalgamacja daje 4.4
+- [ ] Po 4.4 powinien być wniosek, że kanoniczna amalgamacja+whp dają konkluzję 4.4, a potem z tego, że wolna amalgamacja daje 4.4
-67. W sekcji 4.3 brakuje założeń.
+- [ ] W sekcji 4.3 brakuje założeń.
-68. Jak przekształcenie naturalne jest izomorfizmem, to ten składowe też są izomorfizmami (w dwie strony)
+- [ ] Jak przekształcenie naturalne jest izomorfizmem, to ten składowe też są izomorfizmami (w dwie strony)
-69. Dodać że wolna amalgamacja implikuje własność Hrushovskiego.
+- [x] Dodać że wolna amalgamacja implikuje własność hrushovskiego.
+
+- [ ] Upewnić się, że używam konsekwentnie angielskiego zapisu "meagre", a nie "meager"