diff options
author | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-07-11 20:13:42 +0200 |
---|---|---|
committer | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-07-11 20:13:42 +0200 |
commit | ad63d0a98d8595d3267fd81196cf8c96361bd911 (patch) | |
tree | fc71ed3a1b0ce0f26e28d774fd3f160ce54b1ee4 | |
parent | fa334cef8c04e50a45b366a3427db18e638fc992 (diff) |
Updates updates
-rw-r--r-- | lic_malinka.pdf | bin | 51430 -> 483340 bytes | |||
-rw-r--r-- | lic_malinka.tex | 4 | ||||
-rw-r--r-- | sections/conj_classes.tex | 35 | ||||
-rw-r--r-- | sections/fraisse_classes.tex | 135 | ||||
-rw-r--r-- | sections/introduction-pl.tex | 2 | ||||
-rw-r--r-- | sections/introduction.tex | 2 | ||||
-rw-r--r-- | sections/preliminaries.tex | 29 | ||||
-rw-r--r-- | uwagi_29_06_22.txt | 12 |
8 files changed, 88 insertions, 131 deletions
diff --git a/lic_malinka.pdf b/lic_malinka.pdf Binary files differindex d8b613e..03b45e9 100644 --- a/lic_malinka.pdf +++ b/lic_malinka.pdf diff --git a/lic_malinka.tex b/lic_malinka.tex index edeb172..7e9fb07 100644 --- a/lic_malinka.tex +++ b/lic_malinka.tex @@ -45,8 +45,8 @@ \DeclareMathOperator{\st}{st}
\DeclareMathOperator{\Flim}{Flim}
\DeclareMathOperator{\Int}{{Int}}
-\DeclareMathOperator{\rng}{{rng}}
-\DeclareMathOperator{\dom}{{dom}}
+\DeclareMathOperator{\rng}{{Rng}}
+\DeclareMathOperator{\dom}{{Dom}}
\newcommand{\cupdot}{\mathbin{\mathaccent\cdot\cup}}
\newcommand{\cC}{\mathcal C}
diff --git a/sections/conj_classes.tex b/sections/conj_classes.tex index 26229b0..96522f5 100644 --- a/sections/conj_classes.tex +++ b/sections/conj_classes.tex @@ -232,22 +232,25 @@ set $A$. \end{proof} + \begin{theorem} + \label{theorem:key-theorem} + Let $\cC$ be a Fraïssé class of finitely generated $L$-structures with WHP + and canonical amalgamation. Then $\Flim(\cC)$ has a generic automorphism. + \end{theorem} + + \begin{proof} + It follows trivially from Corollary \ref{corollary:whp+canonical-iso} + and the above Theorem \ref{theorem:generic_aut_general}. + \end{proof} + \subsection{Properties of the generic automorphism} - Let $\cC$ be a Fraïssé class in a finite relational language $L$ with - weak Hrushovski property. Let $\cH$ be the Fraïssé class of the $L$-structures - with additional automorphism symbol. Let $\Gamma = \Flim(\cC)$. - - % \begin{proposition} - % Let $\sigma$ be the generic automorphism of the random graph $\FrGr$. Then - % the graph induced by the set of the fixed points of $\sigma$ is isomorphic - % to $\FrGr$. - % \end{proposition} - % - % \begin{proof} - % Let $F = \{v\in\FrGr\mid \sigma(v) = v\}$. It suffices to show that $F$ is - % infinite and has the random graph property. - % \end{proof} + Let $\cC$ be a Fraïssé class of finitely generated $L$-structures with + weak Hrushovski property and canonical amalgamation. + Let $\cD$ be the Fraïssé class (by the Theorem \ref{theorem:key-theorem} + of the structures of $\cC$ with additional automorphism of the strucutre. + Let $\Gamma = \Flim(\cC)$. + \begin{proposition} \label{proposition:fixed_points} Let $\sigma$ be the generic automorphism of $\Gamma$. Then the set @@ -257,11 +260,11 @@ \begin{proof} Let $S = \{x\in \Gamma\mid \sigma(x) = x\}$. First we need to show that it is an infinite. By the theorem \ref{theorem:generic_aut_general} - we know that $(\Gamma, \sigma)$ is the Fraïssé limit of $\cH$, thus we + we know that $(\Gamma, \sigma)$ is the Fraïssé limit of $\cD$, thus we can embed finite $L$-structures of any size with identity as an automorphism of the structure into $(\Gamma, \sigma)$. Thus $S$ has to be infinite. Also, the same argument shows that the age of the structure is exactly $\cC$. It is weakly ultrahomogeneous, also by the fact that - $(\Gamma, \sigma)$ is in $\cH$. + $(\Gamma, \sigma)$ is in $\cD$. \end{proof} \end{document} diff --git a/sections/fraisse_classes.tex b/sections/fraisse_classes.tex index 74a8d61..0254280 100644 --- a/sections/fraisse_classes.tex +++ b/sections/fraisse_classes.tex @@ -236,7 +236,8 @@ \begin{definition} We say that a Fraïssé class $\cK$ has the \emph{weak Hrushovski property} (\emph{WHP}) if for every $A\in \cK$ and an isomorphism - of its substructures $p\colon A\to A$ (also called a partial automorphism of $A$), + of its finitely generated substructures + $p\colon A\to A$ (also called a partial automorphism of $A$), there is some $B\in \cK$ such that $p$ can be extended to an automorphism of $B$, i.e.\ there is an embedding $i\colon A\to B$ and a $\bar p\in \Aut(B)$ such that the following @@ -346,6 +347,12 @@ \end{itemize} \end{definition} + From now on in the paper, when $A$ is an $L$-strcuture and $\alpha$ is + an automorphism of + $A$, then by $(A, \alpha)$ we mean the strucutre $A$ expanded by the + unary function corresping to $\alpha$, and $A$ constantly denotes the + $L$-strucutre. + \begin{theorem} \label{theorem:canonical_amalgamation_thm} Let $\cK$ be a Fraïssé class of $L$-structures with canonical amalgamation. @@ -389,79 +396,11 @@ in $\cH$. \end{proof} - \subsection{Graphs with automorphism} - The language and theory of undirected graphs is fairly simple. We extend the - language by one unary symbol $\sigma$ and interpret it as an arbitrary - automorphism on the graph structure. It turns out that the class of such - structures is a Fraïssé class. - - \begin{proposition} - Let $\cH$ be the class of all finite graphs with an automorphism, i.e. - structures in the language $(E, \sigma)$ such that $E$ is a symmetric - relation and $\sigma$ is an automorphism on the structure. $\cH$ is - a Fraïssé class. - \end{proposition} - \begin{proof} - Countability and HP are obvious, JEP follows by the same argument as in - plain graphs. We need to show that the class has the amalgamation property. - - Take any $(A, \alpha), (B, \beta), (C,\gamma)\in\cH$ such that $A$ embeds - into $B$ and $C$. Without the loss of generality we may assume that - $B\cap C = A$ and $\alpha\subseteq\beta,\gamma$. - Let $D$ be the amalgamation of $B$ and $C$ over $A$ as in - the proof for the plain graphs. We will define the automorphism - $\delta\in\Aut(D)$ so it extends $\beta$ and $\gamma$. - We let $\delta\upharpoonright_B = \beta, \delta\upharpoonright_C = \gamma$. - - Let us check that the definition is correct. We have to show that - $(uE_Dv\leftrightarrow \delta(u)E_D\delta(v))$ holds for any $u, v\in - D$. We have two cases: - \begin{itemize} - \item $u, v\in X$, where $X$ is either $B$ or $C$. This case is trivial. - \item $u\in B\setminus A, v\in C\setminus A$. Then - $\delta(u)=\beta(u)\in B\setminus A$, similarly $\delta(v)=\gamma(v)\in - C\setminus A$. This follows from the fact that $\beta\upharpoonright_A - = \alpha$, so for any $w\in A$ it holds that - $\beta^{-1}(w)=\alpha^{-1}(w)\in A$, - similarly for $\gamma$. Thus, from the construction of $D$, $\neg uE_Dv$ - and $\neg \delta(u)E_D\delta(v)$. - \end{itemize} - \end{proof} - - The proposition says that there is a Fraïssé limit for the class $\cH$ of finite - graphs with automorphisms. We shall call it $(\FrAut, \sigma)$. Not - surprisingly, $\FrAut$ is in fact a random graph. - - \begin{proposition} - \label{proposition:graph-aut-is-normal} - The Fraïssé limit of $\cH$ interpreted as a plain graph (i.e. as a reduct - to the language of graphs) is isomorphic to the random graph $\FrGr$. - \end{proposition} - - \begin{proof} - It is enough to show that $\FrAut = \Flim(\cH)$ has the random graph - property. Take any finite disjoint $X, Y\subseteq \FrAut$. Without the loss - of generality assume that $X\cup Y$ is $\sigma$-invariant, i.e. - $\sigma(v)\in X\cup Y$ for $v\in X\cup Y$. This assumption can be made - because there are no infinite orbits in $\sigma$, which in turn is due to - the fact that $\cH$ is the age of $\FrAut$. - - Let $G_{XY}$ be the graph induced by $X\cup Y$. Take $H=G_{XY}\sqcup {v}$ - as a supergraph of $G_{XY}$ with one new vertex $v$ connected to all - vertices of $X$ and to none of $Y$. By the proposition - \ref{proposition:finite-graphs-whp} we can extend $H$ together with its - partial isomorphism $\sigma\upharpoonright_{X\cup Y}$ to a graph $R$ with - automorphism $\tau$. Once again, without the loss of generality we can - assume that $R\subseteq\FrAut$, because $\cH$ is the age of $\FrAut$. But - $R\upharpoonright_{G_{XY}}$ together with $\tau\upharpoonright_{G_{XY}}$ - are isomorphic to the $G_{XY}$ with $\sigma\upharpoonright_{G_{XY}}$. - - Thus, by ultrahomogeneity of $\FrAut$ this isomorphism extends to an - automorphism $\theta$ of $(\FrAut, \sigma)$. Then $\theta(v)$ is the vertex - that is connected to all vertices of $X$ and none of $Y$, because - $\theta[R\upharpoonright_X] = X, \theta[R\upharpoonright_Y] = Y$. - \end{proof} - + The following theorem is one of the most important in construction of + the generic automorphism given in the next section. Together with canonical + amalgamation it gives a general fact about Fraïssé classes, namely it says + that expanding a Fraïssé class with an automorphism of the structures + does not change the limit. \begin{theorem} \label{theorem:isomorphic_fr_lims} @@ -483,11 +422,11 @@ $(\Pi, \sigma)$, then obviously $B\in\cC$ by the definition of $\cD$. Hence, $\cC$ is indeed the age of $\Pi$. - Now, take any structures $A, B\in\cC$ such that $A\subseteq B$. We will - find an embedding of $B$ into $\Pi$ to show that $\Pi$ is indeed weakly - homogeneous. + Now, to show that $\Pi$ is weakly homogeneous, take any structures $A, B\in\cC$ + such that $A\subseteq B$ with a fixed embedding of $A$ into $\Pi$. Without the - loss of generality assume that $A = B\cap \Pi$. Let $\bar{A}\subseteq\Pi$ + loss of generality assume that $A = B\cap \Pi$ (i.e. $A$ embeds into $\Pi$ + by inclusion). Let $\bar{A}\subseteq\Pi$ be the smallest substructure closed under the automorphism $\sigma$ and containing $A$. It is finitely generated as an $L$-structure, @@ -520,33 +459,21 @@ \end{tikzcd} \end{center} - % - % By the weak Hrushovski property - % of $\cC$ let $(\bar{B}, \beta)$ be a structure extending - % $(B, \sigma\upharpoonright_{A})$. Again, we may assume - % that $B\cup \bar{A}\subseteq \bar{B}$. Then, by the fact that $\Pi$ is a - % Fraïssé limit of $\cD$ there is an embedding - % $f\colon(\bar{B}, \beta)\to(\Pi, \sigma)$ - % such that the following diagram commutes: - % - % - % \begin{center} - % \begin{tikzcd} - % (A, \emptyset) \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & (\bar{A}, \sigma\upharpoonright_A) \arrow[d, "\subseteq"] \arrow[r, "\subseteq"] & (\Pi, \sigma) \\ - % (B, \sigma\upharpoonright_B) \arrow[r, dashed, "\subseteq"'] & (\bar{B}, \beta) \arrow[ur, dashed, "f"] - % \end{tikzcd} - % \end{center} - - % Then we simply get the following diagram: - % - % \begin{center} - % \begin{tikzcd} - % A \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & \Pi \\ - % B \arrow[ur, dashed, "f\upharpoonright_B"'] - % \end{tikzcd} - % \end{center} - % which proves that $\Pi$ is indeed a weakly ultrahomogeneous structure. Hence, it is isomorphic to $\Gamma$. \end{proof} + + \begin{corollary} + \label{corollary:whp+canonical-iso} + Let $\cC$ be a Fraïssé class of finitely generated $L$-structures + with WHP and canonical amalgamation. Let + $\cD$ be the class consisting of structures from $\cC$ with an additional + automorphism. Let $\Gamma = \Flim(\cC)$ and $\Pi = \Flim(\cD)$. + Then $\Gamma \cong \Pi\mid_L$. + \end{corollary} + + \begin{proof} + It follows from Theorems \ref{theorem:canonical_amalgamation_thm} and + \ref{theorem:isomorphic_fr_lims}. + \end{proof} \end{document} diff --git a/sections/introduction-pl.tex b/sections/introduction-pl.tex index 02b6cbe..bd6e2f1 100644 --- a/sections/introduction-pl.tex +++ b/sections/introduction-pl.tex @@ -27,7 +27,7 @@ \ref{definition:generic_automorphism}, co zostało po raz pierwsze zdefiniowane i udowodnione przez Trussa w \cite{truss_gen_aut}. - Kluczowe twierdzenie \ref{theorem:generic_aut_general} mówi, że klasa + Kluczowe twierdzenie \ref{theorem:key-theorem} mówi, że klasa Fraïsségo z kanoniczną amalgamacją i słabą własnością Hrushovskiego ma generyczny automorfizm. Istnienie takiego automorfizmu w tym przypadku wynika z wcześniejszych klasycznych wyników Ivanova \cite{ivanov_1999} diff --git a/sections/introduction.tex b/sections/introduction.tex index 34b42f8..655cba7 100644 --- a/sections/introduction.tex +++ b/sections/introduction.tex @@ -26,7 +26,7 @@ \ref{definition:generic_automorphism}, which was first proved by Truss in \cite{truss_gen_aut}, where he also introduced the term. - The key Theorem \ref{theorem:generic_aut_general} + The key Theorem \ref{theorem:key-theorem} says that a Fraïssé class with canonical amalgamation and weak Hrushovski property has a generic automorphism. The fact that such an automorphism exists in this case follows from the classical results of Ivanov \cite{ivanov_1999} diff --git a/sections/preliminaries.tex b/sections/preliminaries.tex index 82e64b4..05aa3ed 100644 --- a/sections/preliminaries.tex +++ b/sections/preliminaries.tex @@ -306,7 +306,11 @@ $\Obj(\cC)$, but most often simply as $\cC$) and collection of \emph{morphisms} $\Mor(A, B)$ between each pair of objects $A, B\in \cC$. We require that for each pair of morphisms $f\colon B\to C$, $g\colon A\to B$ there is a - morphism $f\circ g\colon A\to C$. For every $A\in\cC$ there is an + morphism $f\circ g\colon A\to C$. If $f\colon A\to B$ then we say + that $A$ is the domain of $f$ ($\dom{f}$) and that $B$ is the range of + $f$ ($\rng{f}$). + + For every $A\in\cC$ there is an \emph{identity morphism} $\id_A$ such that for any morphism $f\in \Mor(A, B)$ we have that $f\circ id_A = \id_B \circ f$. @@ -349,6 +353,29 @@ \end{center} \end{definition} + Natural transformation has, \textit{nomen omen}, natural properties. One + particularly interesting to us is the following fact. + + \begin{fact} + Let $\eta$ be a natural transformation of functors $F, G$ from category + $\cC$ to $\cD$. Then $\eta$ is an isomorphism if and only if + all of the component morphisms are isomorphisms. + \end{fact} + + \begin{proof} + Suppose that $\eta_(A)$ is an isomorphism for every $A\in\cC$, where + $\eta_{A}\colon F(A)\to G(A)$ is the morphism of the natural transformation + coresponding to $A$. Then $\eta^{-1}$ is simply given by the morphisms + $\eta^{-1}_A$. + + Now assume that $\eta$ is an isomorphism, i.e. $\eta^{-1}\circ\eta = \id_F$. + \textit{Ad contrario} assume that there is $A\in\cC$ such that the component + morphism $\eta_A\colon F(A)\to G(A)$ is not an isomorphism. It means + that $\eta_A^{-1}\circ\eta_A \neq id_A$, hence + $F(A) = \dom(\eta^{-1}\circ\eta)(A) \neq \rng(\eta^{-1}\circ\eta)(A) = F(A)$, + which is obviously a contradiction. + \end{proof} + \begin{definition} In category theory, a \emph{diagram} of type $\mathcal{J}$ in category $\cC$ is a functor $D\colon \mathcal{J}\to\cC$. $\mathcal{J}$ is called the diff --git a/uwagi_29_06_22.txt b/uwagi_29_06_22.txt index 33d8715..805fb21 100644 --- a/uwagi_29_06_22.txt +++ b/uwagi_29_06_22.txt @@ -142,23 +142,23 @@ n and without the loss of generality we may assume that - [ ] "With a similar argument we can see that (Γ, g) is weakly ultrahomogeneous." to trochę oszustwo, wytłumacz to nieco dokładniej.
-- [ ] Po 4.4 powinien być wniosek, że kanoniczna amalgamacja+whp dają konkluzję 4.4, a potem z tego, że wolna amalgamacja daje 4.4
+- [x] Po 4.4 powinien być wniosek, że kanoniczna amalgamacja+whp dają konkluzję 4.4, a potem z tego, że wolna amalgamacja daje 4.4
- [ ] W sekcji 4.3 brakuje założeń.
-- [ ] Jak przekształcenie naturalne jest izomorfizmem, to ten składowe też są izomorfizmami (w dwie strony)
+- [x] Jak przekształcenie naturalne jest izomorfizmem, to ten składowe też są izomorfizmami (w dwie strony)
- [x] Dodać że wolna amalgamacja implikuje własność hrushovskiego.
-- [ ] Upewnić się, że używam konsekwentnie angielskiego zapisu "meagre", a nie "meager"
+- [x] Upewnić się, że używam konsekwentnie angielskiego zapisu "meagre", a nie "meager"
-- [ ] Poprawić definicję WHP na taką, że to chodzi o finitely generated podstruktury
+- [x] Poprawić definicję WHP na taką, że to chodzi o finitely generated podstruktury
-- [ ] Dodać uwagę, że jak piszę (\Pi, \sigma) to chodzi mi o co innego niż jak piszę \Pi
+- [x] Dodać uwagę, że jak piszę (\Pi, \sigma) to chodzi mi o co innego niż jak piszę \Pi
- [ ] "Odmętnić" początek dowódu 3.23
-- [ ] Poprawić wielkości liter przy theorem, facts itd
+- [x] Poprawić wielkości liter przy theorem, facts itd
- [ ] Przykłady (porządki liniowe, porządki cykliczne, przestrzenie liniowe)
|