aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorFranciszek Malinka <franciszek.malinka@gmail.com>2022-07-11 20:13:42 +0200
committerFranciszek Malinka <franciszek.malinka@gmail.com>2022-07-11 20:13:42 +0200
commitad63d0a98d8595d3267fd81196cf8c96361bd911 (patch)
treefc71ed3a1b0ce0f26e28d774fd3f160ce54b1ee4
parentfa334cef8c04e50a45b366a3427db18e638fc992 (diff)
Updates updates
-rw-r--r--lic_malinka.pdfbin51430 -> 483340 bytes
-rw-r--r--lic_malinka.tex4
-rw-r--r--sections/conj_classes.tex35
-rw-r--r--sections/fraisse_classes.tex135
-rw-r--r--sections/introduction-pl.tex2
-rw-r--r--sections/introduction.tex2
-rw-r--r--sections/preliminaries.tex29
-rw-r--r--uwagi_29_06_22.txt12
8 files changed, 88 insertions, 131 deletions
diff --git a/lic_malinka.pdf b/lic_malinka.pdf
index d8b613e..03b45e9 100644
--- a/lic_malinka.pdf
+++ b/lic_malinka.pdf
Binary files differ
diff --git a/lic_malinka.tex b/lic_malinka.tex
index edeb172..7e9fb07 100644
--- a/lic_malinka.tex
+++ b/lic_malinka.tex
@@ -45,8 +45,8 @@
\DeclareMathOperator{\st}{st}
\DeclareMathOperator{\Flim}{Flim}
\DeclareMathOperator{\Int}{{Int}}
-\DeclareMathOperator{\rng}{{rng}}
-\DeclareMathOperator{\dom}{{dom}}
+\DeclareMathOperator{\rng}{{Rng}}
+\DeclareMathOperator{\dom}{{Dom}}
\newcommand{\cupdot}{\mathbin{\mathaccent\cdot\cup}}
\newcommand{\cC}{\mathcal C}
diff --git a/sections/conj_classes.tex b/sections/conj_classes.tex
index 26229b0..96522f5 100644
--- a/sections/conj_classes.tex
+++ b/sections/conj_classes.tex
@@ -232,22 +232,25 @@
set $A$.
\end{proof}
+ \begin{theorem}
+ \label{theorem:key-theorem}
+ Let $\cC$ be a Fraïssé class of finitely generated $L$-structures with WHP
+ and canonical amalgamation. Then $\Flim(\cC)$ has a generic automorphism.
+ \end{theorem}
+
+ \begin{proof}
+ It follows trivially from Corollary \ref{corollary:whp+canonical-iso}
+ and the above Theorem \ref{theorem:generic_aut_general}.
+ \end{proof}
+
\subsection{Properties of the generic automorphism}
- Let $\cC$ be a Fraïssé class in a finite relational language $L$ with
- weak Hrushovski property. Let $\cH$ be the Fraïssé class of the $L$-structures
- with additional automorphism symbol. Let $\Gamma = \Flim(\cC)$.
-
- % \begin{proposition}
- % Let $\sigma$ be the generic automorphism of the random graph $\FrGr$. Then
- % the graph induced by the set of the fixed points of $\sigma$ is isomorphic
- % to $\FrGr$.
- % \end{proposition}
- %
- % \begin{proof}
- % Let $F = \{v\in\FrGr\mid \sigma(v) = v\}$. It suffices to show that $F$ is
- % infinite and has the random graph property.
- % \end{proof}
+ Let $\cC$ be a Fraïssé class of finitely generated $L$-structures with
+ weak Hrushovski property and canonical amalgamation.
+ Let $\cD$ be the Fraïssé class (by the Theorem \ref{theorem:key-theorem}
+ of the structures of $\cC$ with additional automorphism of the strucutre.
+ Let $\Gamma = \Flim(\cC)$.
+
\begin{proposition}
\label{proposition:fixed_points}
Let $\sigma$ be the generic automorphism of $\Gamma$. Then the set
@@ -257,11 +260,11 @@
\begin{proof}
Let $S = \{x\in \Gamma\mid \sigma(x) = x\}$.
First we need to show that it is an infinite. By the theorem \ref{theorem:generic_aut_general}
- we know that $(\Gamma, \sigma)$ is the Fraïssé limit of $\cH$, thus we
+ we know that $(\Gamma, \sigma)$ is the Fraïssé limit of $\cD$, thus we
can embed finite $L$-structures of any size with identity as an
automorphism of the structure into $(\Gamma, \sigma)$. Thus $S$ has to be
infinite. Also, the same argument shows that the age of the structure is
exactly $\cC$. It is weakly ultrahomogeneous, also by the fact that
- $(\Gamma, \sigma)$ is in $\cH$.
+ $(\Gamma, \sigma)$ is in $\cD$.
\end{proof}
\end{document}
diff --git a/sections/fraisse_classes.tex b/sections/fraisse_classes.tex
index 74a8d61..0254280 100644
--- a/sections/fraisse_classes.tex
+++ b/sections/fraisse_classes.tex
@@ -236,7 +236,8 @@
\begin{definition} We say that a Fraïssé class $\cK$ has the \emph{weak
Hrushovski property} (\emph{WHP}) if for every $A\in \cK$ and an isomorphism
- of its substructures $p\colon A\to A$ (also called a partial automorphism of $A$),
+ of its finitely generated substructures
+ $p\colon A\to A$ (also called a partial automorphism of $A$),
there is some $B\in \cK$ such
that $p$ can be extended to an automorphism of $B$, i.e.\ there is an
embedding $i\colon A\to B$ and a $\bar p\in \Aut(B)$ such that the following
@@ -346,6 +347,12 @@
\end{itemize}
\end{definition}
+ From now on in the paper, when $A$ is an $L$-strcuture and $\alpha$ is
+ an automorphism of
+ $A$, then by $(A, \alpha)$ we mean the strucutre $A$ expanded by the
+ unary function corresping to $\alpha$, and $A$ constantly denotes the
+ $L$-strucutre.
+
\begin{theorem}
\label{theorem:canonical_amalgamation_thm}
Let $\cK$ be a Fraïssé class of $L$-structures with canonical amalgamation.
@@ -389,79 +396,11 @@
in $\cH$.
\end{proof}
- \subsection{Graphs with automorphism}
- The language and theory of undirected graphs is fairly simple. We extend the
- language by one unary symbol $\sigma$ and interpret it as an arbitrary
- automorphism on the graph structure. It turns out that the class of such
- structures is a Fraïssé class.
-
- \begin{proposition}
- Let $\cH$ be the class of all finite graphs with an automorphism, i.e.
- structures in the language $(E, \sigma)$ such that $E$ is a symmetric
- relation and $\sigma$ is an automorphism on the structure. $\cH$ is
- a Fraïssé class.
- \end{proposition}
- \begin{proof}
- Countability and HP are obvious, JEP follows by the same argument as in
- plain graphs. We need to show that the class has the amalgamation property.
-
- Take any $(A, \alpha), (B, \beta), (C,\gamma)\in\cH$ such that $A$ embeds
- into $B$ and $C$. Without the loss of generality we may assume that
- $B\cap C = A$ and $\alpha\subseteq\beta,\gamma$.
- Let $D$ be the amalgamation of $B$ and $C$ over $A$ as in
- the proof for the plain graphs. We will define the automorphism
- $\delta\in\Aut(D)$ so it extends $\beta$ and $\gamma$.
- We let $\delta\upharpoonright_B = \beta, \delta\upharpoonright_C = \gamma$.
-
- Let us check that the definition is correct. We have to show that
- $(uE_Dv\leftrightarrow \delta(u)E_D\delta(v))$ holds for any $u, v\in
- D$. We have two cases:
- \begin{itemize}
- \item $u, v\in X$, where $X$ is either $B$ or $C$. This case is trivial.
- \item $u\in B\setminus A, v\in C\setminus A$. Then
- $\delta(u)=\beta(u)\in B\setminus A$, similarly $\delta(v)=\gamma(v)\in
- C\setminus A$. This follows from the fact that $\beta\upharpoonright_A
- = \alpha$, so for any $w\in A$ it holds that
- $\beta^{-1}(w)=\alpha^{-1}(w)\in A$,
- similarly for $\gamma$. Thus, from the construction of $D$, $\neg uE_Dv$
- and $\neg \delta(u)E_D\delta(v)$.
- \end{itemize}
- \end{proof}
-
- The proposition says that there is a Fraïssé limit for the class $\cH$ of finite
- graphs with automorphisms. We shall call it $(\FrAut, \sigma)$. Not
- surprisingly, $\FrAut$ is in fact a random graph.
-
- \begin{proposition}
- \label{proposition:graph-aut-is-normal}
- The Fraïssé limit of $\cH$ interpreted as a plain graph (i.e. as a reduct
- to the language of graphs) is isomorphic to the random graph $\FrGr$.
- \end{proposition}
-
- \begin{proof}
- It is enough to show that $\FrAut = \Flim(\cH)$ has the random graph
- property. Take any finite disjoint $X, Y\subseteq \FrAut$. Without the loss
- of generality assume that $X\cup Y$ is $\sigma$-invariant, i.e.
- $\sigma(v)\in X\cup Y$ for $v\in X\cup Y$. This assumption can be made
- because there are no infinite orbits in $\sigma$, which in turn is due to
- the fact that $\cH$ is the age of $\FrAut$.
-
- Let $G_{XY}$ be the graph induced by $X\cup Y$. Take $H=G_{XY}\sqcup {v}$
- as a supergraph of $G_{XY}$ with one new vertex $v$ connected to all
- vertices of $X$ and to none of $Y$. By the proposition
- \ref{proposition:finite-graphs-whp} we can extend $H$ together with its
- partial isomorphism $\sigma\upharpoonright_{X\cup Y}$ to a graph $R$ with
- automorphism $\tau$. Once again, without the loss of generality we can
- assume that $R\subseteq\FrAut$, because $\cH$ is the age of $\FrAut$. But
- $R\upharpoonright_{G_{XY}}$ together with $\tau\upharpoonright_{G_{XY}}$
- are isomorphic to the $G_{XY}$ with $\sigma\upharpoonright_{G_{XY}}$.
-
- Thus, by ultrahomogeneity of $\FrAut$ this isomorphism extends to an
- automorphism $\theta$ of $(\FrAut, \sigma)$. Then $\theta(v)$ is the vertex
- that is connected to all vertices of $X$ and none of $Y$, because
- $\theta[R\upharpoonright_X] = X, \theta[R\upharpoonright_Y] = Y$.
- \end{proof}
-
+ The following theorem is one of the most important in construction of
+ the generic automorphism given in the next section. Together with canonical
+ amalgamation it gives a general fact about Fraïssé classes, namely it says
+ that expanding a Fraïssé class with an automorphism of the structures
+ does not change the limit.
\begin{theorem}
\label{theorem:isomorphic_fr_lims}
@@ -483,11 +422,11 @@
$(\Pi, \sigma)$, then obviously $B\in\cC$ by the definition of $\cD$.
Hence, $\cC$ is indeed the age of $\Pi$.
- Now, take any structures $A, B\in\cC$ such that $A\subseteq B$. We will
- find an embedding of $B$ into $\Pi$ to show that $\Pi$ is indeed weakly
- homogeneous.
+ Now, to show that $\Pi$ is weakly homogeneous, take any structures $A, B\in\cC$
+ such that $A\subseteq B$ with a fixed embedding of $A$ into $\Pi$.
Without the
- loss of generality assume that $A = B\cap \Pi$. Let $\bar{A}\subseteq\Pi$
+ loss of generality assume that $A = B\cap \Pi$ (i.e. $A$ embeds into $\Pi$
+ by inclusion). Let $\bar{A}\subseteq\Pi$
be the
smallest substructure closed under the automorphism
$\sigma$ and containing $A$. It is finitely generated as an $L$-structure,
@@ -520,33 +459,21 @@
\end{tikzcd}
\end{center}
- %
- % By the weak Hrushovski property
- % of $\cC$ let $(\bar{B}, \beta)$ be a structure extending
- % $(B, \sigma\upharpoonright_{A})$. Again, we may assume
- % that $B\cup \bar{A}\subseteq \bar{B}$. Then, by the fact that $\Pi$ is a
- % Fraïssé limit of $\cD$ there is an embedding
- % $f\colon(\bar{B}, \beta)\to(\Pi, \sigma)$
- % such that the following diagram commutes:
- %
- %
- % \begin{center}
- % \begin{tikzcd}
- % (A, \emptyset) \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & (\bar{A}, \sigma\upharpoonright_A) \arrow[d, "\subseteq"] \arrow[r, "\subseteq"] & (\Pi, \sigma) \\
- % (B, \sigma\upharpoonright_B) \arrow[r, dashed, "\subseteq"'] & (\bar{B}, \beta) \arrow[ur, dashed, "f"]
- % \end{tikzcd}
- % \end{center}
-
- % Then we simply get the following diagram:
- %
- % \begin{center}
- % \begin{tikzcd}
- % A \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & \Pi \\
- % B \arrow[ur, dashed, "f\upharpoonright_B"']
- % \end{tikzcd}
- % \end{center}
- %
which proves that $\Pi$ is indeed a weakly ultrahomogeneous structure.
Hence, it is isomorphic to $\Gamma$.
\end{proof}
+
+ \begin{corollary}
+ \label{corollary:whp+canonical-iso}
+ Let $\cC$ be a Fraïssé class of finitely generated $L$-structures
+ with WHP and canonical amalgamation. Let
+ $\cD$ be the class consisting of structures from $\cC$ with an additional
+ automorphism. Let $\Gamma = \Flim(\cC)$ and $\Pi = \Flim(\cD)$.
+ Then $\Gamma \cong \Pi\mid_L$.
+ \end{corollary}
+
+ \begin{proof}
+ It follows from Theorems \ref{theorem:canonical_amalgamation_thm} and
+ \ref{theorem:isomorphic_fr_lims}.
+ \end{proof}
\end{document}
diff --git a/sections/introduction-pl.tex b/sections/introduction-pl.tex
index 02b6cbe..bd6e2f1 100644
--- a/sections/introduction-pl.tex
+++ b/sections/introduction-pl.tex
@@ -27,7 +27,7 @@
\ref{definition:generic_automorphism}, co zostało po raz pierwsze zdefiniowane
i udowodnione przez Trussa w \cite{truss_gen_aut}.
- Kluczowe twierdzenie \ref{theorem:generic_aut_general} mówi, że klasa
+ Kluczowe twierdzenie \ref{theorem:key-theorem} mówi, że klasa
Fraïsségo z kanoniczną amalgamacją i słabą własnością Hrushovskiego
ma generyczny automorfizm. Istnienie takiego automorfizmu w tym przypadku
wynika z wcześniejszych klasycznych wyników Ivanova \cite{ivanov_1999}
diff --git a/sections/introduction.tex b/sections/introduction.tex
index 34b42f8..655cba7 100644
--- a/sections/introduction.tex
+++ b/sections/introduction.tex
@@ -26,7 +26,7 @@
\ref{definition:generic_automorphism}, which was first proved
by Truss in \cite{truss_gen_aut}, where he also introduced the term.
- The key Theorem \ref{theorem:generic_aut_general}
+ The key Theorem \ref{theorem:key-theorem}
says that a Fraïssé class with canonical amalgamation and weak Hrushovski
property has a generic automorphism. The fact that such an automorphism
exists in this case follows from the classical results of Ivanov \cite{ivanov_1999}
diff --git a/sections/preliminaries.tex b/sections/preliminaries.tex
index 82e64b4..05aa3ed 100644
--- a/sections/preliminaries.tex
+++ b/sections/preliminaries.tex
@@ -306,7 +306,11 @@
$\Obj(\cC)$, but most often simply as $\cC$) and collection of \emph{morphisms}
$\Mor(A, B)$ between each pair of objects $A, B\in \cC$. We require that
for each pair of morphisms $f\colon B\to C$, $g\colon A\to B$ there is a
- morphism $f\circ g\colon A\to C$. For every $A\in\cC$ there is an
+ morphism $f\circ g\colon A\to C$. If $f\colon A\to B$ then we say
+ that $A$ is the domain of $f$ ($\dom{f}$) and that $B$ is the range of
+ $f$ ($\rng{f}$).
+
+ For every $A\in\cC$ there is an
\emph{identity morphism} $\id_A$ such that for any morphism $f\in \Mor(A, B)$
we have that $f\circ id_A = \id_B \circ f$.
@@ -349,6 +353,29 @@
\end{center}
\end{definition}
+ Natural transformation has, \textit{nomen omen}, natural properties. One
+ particularly interesting to us is the following fact.
+
+ \begin{fact}
+ Let $\eta$ be a natural transformation of functors $F, G$ from category
+ $\cC$ to $\cD$. Then $\eta$ is an isomorphism if and only if
+ all of the component morphisms are isomorphisms.
+ \end{fact}
+
+ \begin{proof}
+ Suppose that $\eta_(A)$ is an isomorphism for every $A\in\cC$, where
+ $\eta_{A}\colon F(A)\to G(A)$ is the morphism of the natural transformation
+ coresponding to $A$. Then $\eta^{-1}$ is simply given by the morphisms
+ $\eta^{-1}_A$.
+
+ Now assume that $\eta$ is an isomorphism, i.e. $\eta^{-1}\circ\eta = \id_F$.
+ \textit{Ad contrario} assume that there is $A\in\cC$ such that the component
+ morphism $\eta_A\colon F(A)\to G(A)$ is not an isomorphism. It means
+ that $\eta_A^{-1}\circ\eta_A \neq id_A$, hence
+ $F(A) = \dom(\eta^{-1}\circ\eta)(A) \neq \rng(\eta^{-1}\circ\eta)(A) = F(A)$,
+ which is obviously a contradiction.
+ \end{proof}
+
\begin{definition}
In category theory, a \emph{diagram} of type $\mathcal{J}$ in category $\cC$
is a functor $D\colon \mathcal{J}\to\cC$. $\mathcal{J}$ is called the
diff --git a/uwagi_29_06_22.txt b/uwagi_29_06_22.txt
index 33d8715..805fb21 100644
--- a/uwagi_29_06_22.txt
+++ b/uwagi_29_06_22.txt
@@ -142,23 +142,23 @@ n and without the loss of generality we may assume that
- [ ] "With a similar argument we can see that (Γ, g) is weakly ultrahomogeneous." to trochę oszustwo, wytłumacz to nieco dokładniej.
-- [ ] Po 4.4 powinien być wniosek, że kanoniczna amalgamacja+whp dają konkluzję 4.4, a potem z tego, że wolna amalgamacja daje 4.4
+- [x] Po 4.4 powinien być wniosek, że kanoniczna amalgamacja+whp dają konkluzję 4.4, a potem z tego, że wolna amalgamacja daje 4.4
- [ ] W sekcji 4.3 brakuje założeń.
-- [ ] Jak przekształcenie naturalne jest izomorfizmem, to ten składowe też są izomorfizmami (w dwie strony)
+- [x] Jak przekształcenie naturalne jest izomorfizmem, to ten składowe też są izomorfizmami (w dwie strony)
- [x] Dodać że wolna amalgamacja implikuje własność hrushovskiego.
-- [ ] Upewnić się, że używam konsekwentnie angielskiego zapisu "meagre", a nie "meager"
+- [x] Upewnić się, że używam konsekwentnie angielskiego zapisu "meagre", a nie "meager"
-- [ ] Poprawić definicję WHP na taką, że to chodzi o finitely generated podstruktury
+- [x] Poprawić definicję WHP na taką, że to chodzi o finitely generated podstruktury
-- [ ] Dodać uwagę, że jak piszę (\Pi, \sigma) to chodzi mi o co innego niż jak piszę \Pi
+- [x] Dodać uwagę, że jak piszę (\Pi, \sigma) to chodzi mi o co innego niż jak piszę \Pi
- [ ] "Odmętnić" początek dowódu 3.23
-- [ ] Poprawić wielkości liter przy theorem, facts itd
+- [x] Poprawić wielkości liter przy theorem, facts itd
- [ ] Przykłady (porządki liniowe, porządki cykliczne, przestrzenie liniowe)