aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorFranciszek Malinka <franciszek.malinka@gmail.com>2023-06-26 23:29:51 +0200
committerFranciszek Malinka <franciszek.malinka@gmail.com>2023-06-26 23:29:51 +0200
commitadaff304c956e099d49c5601148126c7fd644f8d (patch)
treebd05359b639b38261db07637064ec4aa48b8379b
parentc5dd32c772edc001a357f1a8b4e440740d07d6a3 (diff)
update
-rw-r--r--semestr2/algebra2r/notatki/notatki.pdfbin460691 -> 461329 bytes
-rw-r--r--semestr2/algebra2r/notatki/sections/modules.tex391
2 files changed, 391 insertions, 0 deletions
diff --git a/semestr2/algebra2r/notatki/notatki.pdf b/semestr2/algebra2r/notatki/notatki.pdf
index 941967f..a8dba76 100644
--- a/semestr2/algebra2r/notatki/notatki.pdf
+++ b/semestr2/algebra2r/notatki/notatki.pdf
Binary files differ
diff --git a/semestr2/algebra2r/notatki/sections/modules.tex b/semestr2/algebra2r/notatki/sections/modules.tex
new file mode 100644
index 0000000..a8b2348
--- /dev/null
+++ b/semestr2/algebra2r/notatki/sections/modules.tex
@@ -0,0 +1,391 @@
+\documentclass[../notatki.tex]{subfiles}
+\begin{document}
+ This section will be devoted to the second part of the course, which was
+ preliminaries to module theory, A.K.A. commutative algebra.
+
+ \subsection{Definitions}
+ Let $R$ be a ring with unity.
+
+ \begin{definition}
+ A \emph{left module over $R$}, or a \emph{left $R$-module}, is a structure
+ $M = (M, +, r)_{r\in R}$ satisfying the following axioms:
+ \begin{itemize}
+ \item $(M, +)$ is an abelian group and $0 = 0m$ (for $m\in M$, $0\in R$),
+ \item $r(m_1 + m_2) = rm_1 + rm_2$, for $r\in R, m_1, m_2\in M$,
+ \item $(r_1 + r_2)m = r_1m + r_2m$, for $r_1,r_2\in R, m\in M$,
+ \item $r_1(r_2m) = (r_1r_2)m$,
+ \item $1m = m$.
+ \end{itemize}
+ The definition of a submodule $N\subseteq M$ is natural, like for any other
+ substructure, i.e. $(N,+) < (M,+)$ and it's closed under ring action, i.e.
+ $rN\subseteq N$.
+ \end{definition}
+
+ Module's axioms are the same as the vector space axioms. Module is basically a
+ vector space over a ring rather than a field. There's also a variation of left
+ $R$-modules which is a \emph{right} $R$-modules, it's axioms are analogous,
+ but the order of the ring operations is ''reversed'', i.e. $m(r_1r_2) =
+ (mr_1)r_2$ which is different than $r_1(r_2m)$, unless the ring is
+ commutative.
+
+ \begin{example}
+ \mbox{}
+ \begin{enumerate}
+ \item When $R$ is a field, then $R$-modules are linear spaces over $R$.
+ \item If $(G,+)$ is an abelian group, then $G$ naturally induces a
+ $\bZ$-module structure, with $k\cdot g = \underbrace{g + \ldots +
+ g}_{k \text{ times}}$, for $k\in\bZ, g\in G$. For $k < 0$ take the sum
+ of $-g$.
+ \item Let $G$ be abelian group. Then $\End(G) = \{f\colon G\to G\}$ is the
+ ring of endomorphisms of $G$. Naturally, $G$ is an $\End(G)$-module,
+ for $f\in\End(G)$ and $g\in G$ put $f\cdot g = f(g)$.
+ \item Similarly to fields, if we have $S\subset R$, then $R$ is a
+ $S$-module.
+ \item If we have a ring homomorphism $j\colon R\to S$, then every
+ $S$-module is also an $R$-module with $r\cdot m = j(r)\cdot m$.
+ \item Let $I\subseteq R$ be a left ideal. Then $I$ is a $R$-module, as
+ $RI\subseteq I$.
+ \end{enumerate}
+ \end{example}
+
+ \begin{remark}
+ Every intersection of a nonempty family submodules of $M$ is a submodule of
+ $M$.
+ \end{remark}
+
+ \begin{theorem}[Fundamental $R$-modules homomorphism theorem]
+ Let $f\colon M\to N$ be a homomorphism of $R$-modules. Then:
+
+ \begin{center}
+ \begin{tikzcd}
+ M \arrow[d, "j"'] \arrow[r, "f"] & N \\
+ M/\ker{f} \arrow[ur, dotted, "\exists^^21 h"'] &
+ \end{tikzcd}
+ \end{center}
+
+ Also, $h$ is an isomorphism of $M/\ker{f}$ and $h[M/\ker{f}]\subseteq N$.
+ \end{theorem}
+
+ \begin{theorem}[homomorphism factorisation]
+ Let $f\colon M\to N, g\colon M\to U$ homomorphisms of $R$-modules. Then
+
+ \begin{center}
+ \begin{tikzcd}
+ M \arrow[d, "g"'] \arrow[r, "f"] & N \\
+ U \arrow[ur, dotted, "\exists^^21 h"'] &
+ \end{tikzcd}
+ \end{center}
+ if and only if $\ker{g}\subseteq \ker{f}$.
+ \end{theorem}
+
+ \begin{remark}
+ A homomorphism $f\colon M\to N$ is 1-1 $\Leftrightarrow$ $\ker f = \{0\}$.
+ \end{remark}
+
+ \begin{definition}
+ $M$ is a \emph{simple} $R$-module when $M\neq\{0\}$ and it has no proper
+ submodules, i.e. its only submodules are $\{0\}$ and $M$.
+ \end{definition}
+
+ For $R$-module $M$ by $\End_R(M)$ denote the set of endomorphisms of $M$.
+
+ \begin{lemma}[Schur's]
+ If $M$ is a simple $R$-module, then $\End_R(M)$ is a division ring.
+ \end{lemma}
+
+ \begin{proof}
+ Let $0\neq f\in\End_R(M)$. Then $f[M] = M$ and $\ker{f} = \{0\}$, hence $f$
+ is an automorphism and it's invertible.
+ \end{proof}
+
+ \begin{fact}
+ If $R$ is a commutative ring and $M$ is a simple $R$-module, then
+ $\End_R(M)$ is a field.
+ \end{fact}
+
+ Moreover, a simple module $M$ is actually cyclic, as for any $0\neq m\in M$ $Rm = M$.
+ Hence, every endomorphism $f\in\End_R(M)$ is determined by $f(m) = rm$.
+ Thus, every endomorphism is of the shape $\phi_r\colon m\mapsto rm$ for some
+ $r\in R$. We get a natural ring epimorphism $\Phi\colon R\to\End_R(M)$ with
+ $r\mapsto\phi_r$, hence $R/\ker{\Phi}\cong \End_R(M)$, so
+ $\ker{\Phi}\triangleleft R$ is a
+ maximal ideal.
+ \subsection{Direct sum}
+ Let $M$ be an $R$-module, $N_1,N_2\subseteq M$ submodules. Then $N_1 + N_2 =
+ \{n_1 + n_2\mid n_1\in N_1, n_2\in N_2\}$ is a submodule of $M$. We can define
+ it similarly for $N_1 + N_2 + \ldots + N_k$.
+
+ \begin{definition}
+ Let $N_1,\ldots,N_k\subset M$ be submodules of $M$. We say that $M$ is a
+ \emph{direct sum} of $N_1,\ldots, N_k$ and write $M = N_1\oplus
+ \ldots\oplus N_k$, when every element of $m$ is uniquely generated in
+ $N_1+\ldots+N_k$, i.e. $\forall m\in M$ $\exists! n_1\in N_1,\ldots, n_k\in
+ N_k$ $m = n_1+\ldots+n_k$.
+ \end{definition}
+
+ The direct sum can be as well defined for a larger family of submodules $\cN =
+ \{N_i, i\in I\}$. In this case $M = \bigoplus_{i\in I} N_i$ when every element
+ can be uniquely described as a sum of finitely many elements of the
+ submodules in $\cN$.
+
+ It turns out that direct sum can be also defined abstractly,
+ as the coproduct in the category of $R$-modules.
+
+ \begin{definition}
+ Let $\{M_i, i\in I\}$ be a family of $R$-modules. Then the \emph{direct sum}
+ of this family is defined as
+ \[
+ \bigoplus_{i\in I}M_i = \bigsqcup_{i\in I}M_i = \{f\in\prod_{i\in
+ I}M_i\mid \{i\mid f(i) \neq 0\} \text{ is finite}\}
+ \]
+ \end{definition}
+
+ Associate all $M_i$ with the $i$-th axis of $\bigoplus_{i\in I}M_i$ and let
+ $f_i\colon M_i\to M$ be embedding to the $i$-th axis. The
+ direct sum has the following universal property:
+
+ \begin{remark}
+ Let $M$: $R$-module and $g_i\colon M_i\to M$ for every $i\in I$. Then
+ $\exists!h\colon\bigsqcup_{i\in I}M_i\to M$ such that:
+ \begin{center}
+ \begin{tikzcd}
+ M_i \arrow[d, "f_i"'] \arrow[r, "g_i"] & N \\
+ \displaystyle\bigsqcup_{i\in I}M_i \arrow[ur, dotted, "h"'] &
+ \end{tikzcd}
+ \end{center}
+ \end{remark}
+
+ I abused the notation a little bit, as technically this is an alternative
+ definition of the direct sum and it's not obvious that it is coherent with the
+ previous definition. However, it easily follows from the universal property of
+ the coproduct.
+
+ \subsection{Free modules}
+ \begin{definition}
+ Subset $\{m_i\}_{i\in I}\subseteq M$ is \emph{linearly independent}, when
+ the only (finite) solution to the equation $\bigcup_{i\in I}r_im_i = 0$ is $r_i = 0$
+ for all $i\in I$. If a subset is not linearly independent, the it is
+ \emph{linearly dependent}.
+ \end{definition}
+
+ \begin{definition}
+ A subset $B\subseteq M$ is a \emph{basis} of $M$ when $B$ is linearly
+ independent and generates $M$ as an $R$-module.
+ \end{definition}
+
+ \begin{definition}
+ A module $M$ is \emph{free} if it has a basis.
+ \end{definition}
+
+ For example, $\{0\}$ is linearly dependent, as $1\cdot 0 = 0$. Also $\{m_0,
+ m_0\}$ is linearly dependent. Look at $\bQ$ as a $\bZ$-module, any $a\neq
+ b\in\bQ$ are linearly dependent, hence it has no basis as a $\bZ$-module.
+ But, as $(\bZ_n,+)$ is cyclic, then it has a basis over $\bZ$. If $M_i,i\in
+ I$ are free, then so is the coproduct $\bigsqcup_i M_i$.
+
+ \begin{remark}
+ \label{remark:basis-alt}
+ Let $A = \{a_i, i\in I\}\subseteq M$ be a subset of module $M$. Then the
+ following conditions are equivalent:
+ \begin{enumerate}
+ \item $A$ is a basis of $M$,
+ \item $\forall m\in M$ $m = \sum_i r_ia_i$ is the unique representation,
+ \item $\underset{\text{$R$-module}}{\forall N}\forall g\colon A\to N$
+ $\exists!g'\colon M\to N$ $R$-linear s.t. $g\subseteq g'$.
+ \end{enumerate}
+ \end{remark}
+
+ Hence, free abelian groups are the same as free $\bZ$-modules.
+ The third item basically says that we can say everything about an embedding of
+ a free module just by understanding what happens on the basis.
+
+ \begin{remark}
+ Let $A=\{a_i,i\in I\}$ be a basis of $M$. Then $M = \bigoplus_i Ra_i$.
+ \end{remark}
+ \begin{remark}
+ Let $A=\{a_i,i\in I\}$ be set. Then $A$ is a basis of the module
+ $\bigsqcup_{a\in A} R_a$, where $R_a\cong R$.
+ \end{remark}
+
+ \begin{theorem}
+ When $R$ is a commutative ring, then all basis of an $R$-module $M$ are
+ equinumerous.
+ \end{theorem}
+
+ \begin{remark}
+ All $R$-modules are homomorphic image of some free $R$-module.
+ \end{remark}
+
+ \begin{proof}[Proof (sketch)]
+ Look at the free module $N=\bigsqcup_{m\in M} R_m$.
+ \end{proof}
+
+ \begin{fact}
+ \label{fact:free-modules-proj}
+ Let $M, N$ be $R$-modules, $N$ free and $f\colon M\to N$ be an epimorphism.
+ Then $M\cong \ker f\oplus N$, i.e. there is a submodule $N'\subseteq M$ such
+ that $N'\cong N$ and $M=\ker f\oplus N'$.
+ \end{fact}
+
+ \begin{proof}
+ Let $B\subseteq N$ be a basis. For every $b$ choose any $b'\in f^{-1}[b]$.
+ Let $g\colon B\to M$. By remark \ref{remark:basis-alt}(3) $g$ extends to a
+ homomorphism $g'\colon N\to M$. Moreover, $f\circ g'\colon N\to N$ and
+ $\restr{(f\circ g')}{B} = \id_B$, hence $f\circ g = \id_N$ by
+ \ref{remark:basis-alt}(2). Hence $g'$ is a monomorphism, $g'[N]\cong N$ and
+ $M = \ker f\oplus g'[N]$, because for any $m\in M$ we have that $m = (m -
+ (g'f)(m)) + (g'f)(m)$, but $f(m - (g'f)(m)) = f(m) - fg'f(m) = f(m) - f(m) =
+ 0$, hence $m - (g'f)(m)\in\ker f$ and obviously $(g'f)(m)\in g'[N]$.
+ Moreover, $\ker f\cap g'[N] = \{0\}$, so the representation is unique.
+ \end{proof}
+
+ \subsection{Projectivity and injectivity}
+ Last fact from the previous subsection raises a natural generalization.
+
+ \begin{definition}
+ An epimorphism $f\colon M\to N$ \emph{splits} when $M = \ker f \oplus M'$
+ for some $M'\subset M$.
+ \end{definition}
+
+ \begin{remark}
+ An epimorphism $f\colon M\to N$ splits $\Leftrightarrow$ $\exists g\colon
+ N\to M$ $fg = \id_N$.
+ \end{remark}
+
+ \begin{proof}
+ $\Rightarrow$ It's clear that $M'\cong N$ with $\restr{f}{M'}$ being the
+ isomorphism. Hence, $g = \restr{f}{M'}^{-1}$ is such that $gf = \id_N$.
+ $\Leftarrow$ Check that $M = \ker f \oplus \im g$.
+ \end{proof}
+
+ \begin{remark}
+ Let $g\colon M\to N$ be a monomorphism. Then $g[M]$ is a direct summand of
+ $N$ $\Leftrightarrow$ $\exists f\colon N\to M$ $fg = \id_M$.
+ \end{remark}
+
+ \begin{definition}
+ An $R$-module $N$ is \emph{projective} when $\forall M$ $\forall f\colon
+ M\overset{\text{epi}}{\longrightarrow}N$ $f$ splits.
+ \end{definition}
+
+ From the fact \ref{fact:free-modules-proj}, a free module is projective. There is also a dual
+ notion:
+
+ \begin{definition}
+ An $R$-module $M$ is \emph{injective}, when $\forall N$ $\forall g\colon
+ M\overset{\text{mono}}{\longrightarrow} N$ $N = \im(g)\oplus N'$ for some
+ $N'\subseteq N$.
+ \end{definition}
+
+ \subsubsection{Exact sequences}
+ In literature notion of injective and projective modules are often described
+ with
+ exact sequences. On this lecture we did not introduce it, however I think that
+ it gives a nice visual representation to think about projective and injective
+ modules, so I'll give these alternative definitions here.
+
+ \begin{definition}
+ A sequence of morphisms
+ \[ G_0\overset{f_1}{\longrightarrow} G_1 \overset{f_2}{\longrightarrow}
+ \ldots \overset{f_n}{\longrightarrow} G_n \]
+ is \emph{exact} when $\im f_i = \ker{f_{i+1}}$ for every $1\le i < n$. In
+ other words, ''jumping'' by to morphisms always leads to $0$.
+ \end{definition}
+
+ \begin{definition}
+ An $R$-module $N$ is \emph{projective}, if every exact sequence of morphisms
+ \[ 0\longrightarrow A\longrightarrow M\longrightarrow N\longrightarrow 0\]
+ is a \emph{split exact} sequence, i.e. the middle module is isomorphic to
+ the direct sum of the other.
+ \end{definition}
+
+ Try to check for yourself that this definition is equivalent to the previous
+ one, it's quite straightforward. Injectivity is very similar:
+
+ \begin{definition}
+ An $R$-module $M$ is \emph{injective}, if every exact sequence of morphisms
+ \[ 0\longrightarrow M\longrightarrow N\longrightarrow A\longrightarrow 0\]
+ is a split exact sequence, i.e. the middle module is isomorphic to
+ the direct sum of the other.
+ \end{definition}
+
+ \subsubsection{Properties}
+ There are nice properties of projective and injective modules, portrayed by
+ the following theorems.
+
+ \begin{theorem}
+ The following conditions are equivalent:
+ \begin{enumerate}
+ \item Module $P$ is projective,
+ \item For every morphism $f\colon M\to N$ of arbitrary modules $M$ and $N$
+ and every $g\colon P\to N$ there is $h\colon P\to M$ such that $f\circ h = g$
+ \item There is a module $L$ such that $P\oplus L$ is free.
+ \end{enumerate}
+ \end{theorem}
+
+ \begin{proof}
+ Try showing (2)$\Rightarrow$(1) and (1)$\Rightarrow$(3) on your own.
+ We'll only show (3)$\Rightarrow$(2), as it is the most interesting one.
+
+ Assume there is $L$ such that $P\oplus L$ is free. Take any $M, N$,
+ epimorphism $g\colon M\to N$ and morphism $g\colon P\to N$. We have a
+ natural morphism $j\colon P\oplus L\to P$. Let's find $h\colon P\oplus L\to
+ M$ such that the following diagram commutes:
+ \begin{center}
+ \begin{tikzcd}
+ M \arrow[rrr, "f"] & & & N \\
+ & & P \arrow[ur, "g"] & \\
+ & P\oplus L \arrow[ur, "j"] \arrow[dotted, uul, "h"] & &
+ \end{tikzcd}
+ \end{center}
+
+ Let $B = \{p_i + l_i, i\in I\}$ be the basis of $P\oplus L$. Then let
+ $h'\colon B\to M$ be such that $h'(p_i + l_i) \in f^{-1}[g(p_i)]$. By remark
+ \ref{remark:basis-alt} this extends to $h\colon P\oplus L\to M$. It's easy
+ to check that $fh = gj$ and $\restr{h}{P}$ is what we're looking for.
+ \end{proof}
+
+ \begin{theorem}
+ A module $Q$ is injective $\Leftrightarrow$ for every monomorphism $f\colon
+ M\to N$ of arbitrary modules $M, N$ and a morphism $g\colon M\to Q$ there is
+ $h\colon N\to Q$ such that $hf = g$.
+ \end{theorem}
+
+ \begin{proof}
+ $\Leftarrow$ is easy. For $\Rightarrow$, consider $(Q\oplus N)/L$, where $L$
+ is a submodule generated by $\{(g(m), -f(m))\mid m\in M\}$. We have a
+ natural morphism $j\colon Q\to (Q\oplus N) /L$. Let $k\colon N\to (Q\oplus
+ N)$ be also natural, i.e. $k(n) = n + L$. Then we have $kf = jg$, as for any
+ $m\in M$ $ j(g(m)) - k(f(m)) = g(m) - f(m) + L = 0 + L$. But $j$ is a
+ monomorphism (why?) and $Q$ is injective, so there must be $j'\colon
+ (Q\oplus N)/L\to Q$ such that $jj' = \id_Q$. Then $h = j'k$ is good.
+
+ \begin{center}
+ \begin{tikzcd}
+ M \arrow[rrr, "f"] \arrow[dr, "g"] & & & N \arrow[ddl, dotted, "h'"] \\
+ & Q \arrow[dr, bend right, "j"'] & & \\
+ & & (Q\oplus N)/ L \arrow[ul, bend right, "j'"'] &
+ \end{tikzcd}
+ \end{center}
+ \end{proof}
+
+ \begin{theorem}[Baer's criterion]
+ $R$-module $Q$ is injective $\Leftrightarrow$ for every ideal $I\subset R$
+ and homomorphism $f\colon I\to Q$, $f$ extends to a homomorphism $R\to Q$.
+ \end{theorem}
+
+ \begin{corollary}
+ If $R$ is PID, then $Q$ is injective $\Leftrightarrow$ $\forall r\in
+ R\setminus \{0\}$ $\forall m\in Q$ $\exists m'\in Q$ $rm' = m$ (i.e. every
+ element is divisible by every non-zero $r\in R$).
+ \end{corollary}
+
+ Hence, $\bQ$ is injective module. Moreover, every field is an injective
+ $\bZ$-module.
+
+ \begin{corollary}
+ Let $R$ be a Noetherian ring and $\{Q_j\}_\{j\in J\}$ be a family of
+ injective $R$-modules. Then the direct sum $\bigoplus_j Q_j$ is also
+ injective.
+ \end{corollary}
+\end{document}