aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorFranciszek Malinka <franciszek.malinka@gmail.com>2023-06-25 14:54:57 +0200
committerFranciszek Malinka <franciszek.malinka@gmail.com>2023-06-25 14:54:57 +0200
commit36c4ce65623ab30636cc77313c266930aac014c8 (patch)
tree5ae683d371bb4045896b19703fb9e0b9b9463b17
parent8152ca8f5de29ad15a13eacb3721172e056eefba (diff)
notes cd
-rw-r--r--semestr2/algebra2r/notatki/notatki.pdfbin384069 -> 413499 bytes
-rw-r--r--semestr2/algebra2r/notatki/notatki.tex18
-rw-r--r--semestr2/algebra2r/notatki/sections/alg-ext.tex5
-rw-r--r--semestr2/algebra2r/notatki/sections/galois.tex4
-rw-r--r--semestr2/algebra2r/notatki/sections/norm-and-trace.tex27
-rw-r--r--semestr2/algebra2r/notatki/sections/prelim.tex4
6 files changed, 50 insertions, 8 deletions
diff --git a/semestr2/algebra2r/notatki/notatki.pdf b/semestr2/algebra2r/notatki/notatki.pdf
index 948deb6..da30018 100644
--- a/semestr2/algebra2r/notatki/notatki.pdf
+++ b/semestr2/algebra2r/notatki/notatki.pdf
Binary files differ
diff --git a/semestr2/algebra2r/notatki/notatki.tex b/semestr2/algebra2r/notatki/notatki.tex
index 18c38c9..276cb6e 100644
--- a/semestr2/algebra2r/notatki/notatki.tex
+++ b/semestr2/algebra2r/notatki/notatki.tex
@@ -51,6 +51,7 @@
\DeclareMathOperator{\Stab}{Stab}
\DeclareMathOperator{\st}{st}
\DeclareMathOperator{\Flim}{Flim}
+\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\Int}{{Int}}
\DeclareMathOperator{\ord}{{ord}}
\DeclareMathOperator{\Tr}{{Tr}}
@@ -88,6 +89,8 @@
\DeclareMathOperator{\im}{{Im}}
+\DeclareMathOperator{\Fix}{{Fix}}
+\DeclareMathOperator{\Sym}{{Sym}}
\DeclareMathOperator{\sep}{{sep}}
\DeclareMathOperator{\rad}{{rad}}
\DeclareMathOperator{\Char}{{char}}
@@ -154,7 +157,7 @@
\vspace{3cm}
\vfill
\begin{center}
- {\large Wrocław 2022}\\
+ {\large Wrocław 2023}\\
\end{center}
\newpage
@@ -164,12 +167,18 @@
I assume you're familiar with the notion of ring, polynomial ring, field,
field extension, homomorphism, etc.
- The following holds:
Also, it was very hard to order the topics, as they interleave a lot, so there
may be places where a proof of statement of a theorem refers to some notion
from the further parts of the note. However, I assume that reader has some
knowledge of Galois theory and uses the note as a reminder for the exam.
+ Everything written in red is subject to change. If you have idea how to fill
+ the gaps, then don't hesitate to let me now.
+
+ Checkout my page: \url{https://framal.xyz},
+ \href{franciszek.malinka@gmail.com}{write me an email} or
+ \href{https://www.buymeacoffee.com/framal}{buy me a coffee}.
+
\section{Preliminaries}
\label{section:preliminaries}
\subfile{sections/prelim}
@@ -195,8 +204,11 @@
\label{section:norm-and-trace}
\subfile{sections/norm-and-trace}
+ \section{Galois correspondence}
+ \label{section:galois-cont}
+ \subfile{sections/galois-cont}
+
\section{Transcendental extensions}
\label{section:lioville}
\subfile{sections/lioville}
-
\end{document}
diff --git a/semestr2/algebra2r/notatki/sections/alg-ext.tex b/semestr2/algebra2r/notatki/sections/alg-ext.tex
index d5e8a93..4e9ae10 100644
--- a/semestr2/algebra2r/notatki/sections/alg-ext.tex
+++ b/semestr2/algebra2r/notatki/sections/alg-ext.tex
@@ -115,6 +115,11 @@
a_n)$, so $[K(m):K] \le [K'(m):K] = [K'(m):K']\cdot[K':K] < \infty$, as both
$[K'(m):K'], [K':K]$ are finite.
\end{proof}
+
+ \begin{example}
+ If $[L\colon K] = p$ for $p$ prime then there are no intermediate fields between $L$ and
+ $K$.
+ \end{example}
\subsection{Algebraic closure}
\begin{definition}
diff --git a/semestr2/algebra2r/notatki/sections/galois.tex b/semestr2/algebra2r/notatki/sections/galois.tex
index 4931702..5adefb2 100644
--- a/semestr2/algebra2r/notatki/sections/galois.tex
+++ b/semestr2/algebra2r/notatki/sections/galois.tex
@@ -37,7 +37,7 @@
\begin{theorem}
$K\subset L$ is a normal extension $\Leftrightarrow$ $\forall f\in
- G(\hat{K}/K)$ $f[L] = L$ $\Leftrightarrow$ $\forall b\in L \, W_b(X)\in
+ G(\hat{K}/K)$ $f[L] = L$ $\Leftrightarrow$ $\forall b\in L \; W_b(X)\in
K[X]$ splits in $L[X]$ into linear factors (where $W_b(X)$ is the minimal
polynomial of $b$ over $K$).
\end{theorem}
@@ -148,7 +148,7 @@
\begin{proof}{(key ideas)}
This is very easy in the finite fields. For infinite it's quite tricky and
technical. The idea is to show that it is true for two separable elements
- $a,b$, the rest follows through indunction. It turns out that we can construct
+ $a,b$, the rest follows through induction. It turns out that we can construct
$a^*$ with suitable $c\in K$, such that $a^* = a + cb$. This is great news,
because it basically means that in general $a^*$ is some linear combination
of $a_1,\ldots, a_n$. Obviously $K(a^*)\subseteq K(a,b)$ no matter what $c$
diff --git a/semestr2/algebra2r/notatki/sections/norm-and-trace.tex b/semestr2/algebra2r/notatki/sections/norm-and-trace.tex
index 6b06308..dd1c145 100644
--- a/semestr2/algebra2r/notatki/sections/norm-and-trace.tex
+++ b/semestr2/algebra2r/notatki/sections/norm-and-trace.tex
@@ -22,6 +22,28 @@
\end{definition}
\begin{fact}
+ Assume $a\in L$ algebraic over $K$, $L=K[a]$, let $W(X) = X^n +
+ a_{n-1}X^{n-1}+\ldots+a_1X +a_0$ be the minimal polynomial of $a$ over $K$.
+ Then:
+ \begin{enumerate}
+ \item $\Tr_{L/K}(a) = -a_n$,
+ \item $N_{L/K}(a) = (-1)^n a_0$,
+ \item $W(X) = (-1)^n\phi(x)$, where $\phi(x)$ is the characteristic
+ polynomial of the linear map $f_a$.
+ \end{enumerate}
+ \end{fact}
+
+ \begin{fact}
+ Let $K\subset L\subset M$, $[M\colon K] < \infty$ and $a\in L$. Then:
+ \begin{enumerate}
+ \item $\Tr_{M/K}(a) = [M\colon L]\cdot \Tr_{L/K}(a)$,
+ \item $N_{M/K}(a) = N_{L/K}(a)^{[M\colon L]}$,
+ \item $\Tr_{M/K} = \Tr_{L/K}\circ\Tr_{M/L}$,
+ \item $N_{M/K} = N_{L/K}\circ N_{M/L}$.
+ \end{enumerate}
+ \end{fact}
+
+ \begin{fact}
Let $\{f_1\ldots, f_k\} = \{f\colon L\to \hat{K}\mid \restr{f}{K} =
\id_K\}$, $k = \sepdeg{L}{K}$ and $a\in L$. Then:
\begin{enumerate}
@@ -30,5 +52,8 @@
the norm).
\end{enumerate}
\end{fact}
-
+
+ \begin{example}
+ \color{red}{There will be a nice example one day...}
+ \end{example}
\end{document}
diff --git a/semestr2/algebra2r/notatki/sections/prelim.tex b/semestr2/algebra2r/notatki/sections/prelim.tex
index f3596e3..d3e4b3c 100644
--- a/semestr2/algebra2r/notatki/sections/prelim.tex
+++ b/semestr2/algebra2r/notatki/sections/prelim.tex
@@ -63,7 +63,7 @@
\begin{definition}
Let $K\subset L_1$, $K\subset L_2$ field extensions, then:
\begin{displaymath}
- L_1\cong_K l_2 \Leftrightarrow \exists f\colon
+ L_1\cong_K L_2 \Leftrightarrow \exists f\colon
L_1\xrightarrow{\cong} L_2 \text{ such that } f_{\upharpoonright K} =
\id_K
\end{displaymath}
@@ -109,7 +109,7 @@
\begin{proof}
As $\Char(K) = 0$, all roots of $f$ in $L$ are pairwise disjoint.
- Let $a_1\,ldots, a_n$ be roots of $f$ in $L$. It's easy to see that
+ Let $a_1,\ldots, a_n$ be roots of $f$ in $L$. It's easy to see that
$I(a_i/K) = I(a_j / K)$ for any $1\le i, j\le n$. Then by \ref{remark:iso}
we know that there is an automorphism $f\colon L\to L$ such that $f(a_1) =
f(a_i)$ for any $1\le i\le n$.