1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
module type OrderedType = sig
type t
val compare : t -> t -> int
end
module type S = sig
type key
type t
(** permutacja jako funkcja *)
val apply : t -> key -> key
(** permutacja identycznościowa *)
val id : t
(** permutacja odwrotna *)
val invert : t -> t
(** permutacja która tylko zamienia dwa elementy miejscami *)
val swap : key -> key -> t
(** złożenie permutacji (jako złożenie funkcji) *)
val compose : t -> t -> t
(** porównywanie permutacji *)
val compare : t -> t -> int
end
module Make(Key : OrderedType) : (S with type key = Key.t) =
struct
type key = Key.t
module MapModule = Map.Make(Key)
type t = key MapModule.t * key MapModule.t
let apply ((map, invmap) : t) k =
try (MapModule.find k map) with
| Not_found -> k
let id : t = (MapModule.empty, MapModule.empty)
let invert ((map, invmap) : t) : t =
(invmap, map)
let swap k1 k2 : t =
let (map, invmap) = id in
(MapModule.add k2 k1 (MapModule.add k1 k2 map), MapModule.add k2 k1 (MapModule.add k1 k2 invmap))
let compose ((map1, invmap1) : t) ((map2, invmap2) : t) : t =
let f map x m1_of_x m2_of_x = match m1_of_x with
| None -> m2_of_x
| Some y -> match MapModule.find_opt y map with
| None -> Some y
| Some z -> Some z
in (MapModule.merge (f map2) map1 map2,
MapModule.merge (f invmap1) invmap2 invmap1)
let compare ((map1, invmap1) : t) ((map2, invmap2): t) =
MapModule.compare Key.compare map1 map2
end
module StringOrder: (OrderedType with type t = string) =
struct
type t = string
let compare s1 s2 = if s1 < s2 then -1 else if s1 > s2 then 1 else 0
end
module StringPerm = Make(StringOrder)
let p = StringPerm.compose (StringPerm.swap "1" "2") (StringPerm.swap "2" "3");;
(* Zadanie 2 *)
let is_generated (type a) (packed : (module S with type t = a)) (perm : a) (generators : (a list)) =
let module PermModule = (val packed : (S with type t = a)) in
let module OrderedPerm : (OrderedType with type t = a) =
struct
type t = a
let compare p1 p2 = PermModule.compare p1 p2
end in
let module SS = Set.Make(OrderedPerm) in
let rec flatmap f = function
| [] -> []
| x :: xs -> (f x) @ flatmap f xs in
let saturate xn =
let perms = SS.elements xn in
let inverts = List.map (fun p -> PermModule.invert p) perms in
let compositions = flatmap (fun p -> (List.map (fun q -> PermModule.compose p q) perms)) perms in
SS.union xn (SS.union (SS.of_list inverts) (SS.of_list compositions)) in
let rec iter xn =
let xn1 = saturate xn in
if SS.mem perm xn1 then true else
if SS.compare xn xn1 == 0 then false else
iter xn1
in iter (SS.of_list generators)
(* Zadanie 3 *)
module OrderedList (X : OrderedType) : (OrderedType with type t = X.t list) =
struct
type t = X.t list
let rec compare (xs: t) (ys: t) =
match (xs, ys) with
| ([], []) -> 0
| ([], _) -> -1
| (_, []) -> 1
| (x :: xs, y :: ys) -> let cmp = X.compare x y in
if cmp == 0 then compare xs ys else cmp
end
module OrderedPair (X : OrderedType) : (OrderedType with type t = X.t * X.t) =
struct
type t = X.t * X.t
let compare ((a, b): t) ((c, d) : t) =
let cmp = X.compare a c in
if cmp == 0 then X.compare b d else cmp
end
module OrderedOption (X : OrderedType) : (OrderedType with type t = X.t option) =
struct
type t = X.t option
let compare (a: t) (b: t) =
match (a, b) with
| (None, None) -> 0
| (None, _) -> -1
| (_, None) -> 1
| (Some a, Some b) -> X.compare a b
end
|