aboutsummaryrefslogtreecommitdiff
path: root/lic_malinka.tex
blob: ede70081650a4b55680074388b57ef0b3b3915aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
\documentclass[11pt, a4paper, final]{amsart} 
\setlength{\emergencystretch}{2em}

\usepackage[backend=biber]{biblatex}
\addbibresource{licmalinka.bib}


\usepackage[T1]{fontenc} 
\usepackage{mathtools}
\usepackage[activate={true,nocompatibility},final,tracking=true,kerning=true,spacing=true,stretch=10,shrink=10]{microtype}
\microtypecontext{spacing=nonfrench}
% \usepackage[utf8]{inputenc}

\usepackage{amsfonts} 
\usepackage{amsmath} 
\usepackage{amssymb}
\usepackage{amsthm} 
\usepackage{XCharter} 
\usepackage[charter, expert, greekuppercase=italicized, greekfamily=didot]{mathdesign}
\usepackage{mathtools} 
\usepackage{enumitem} 
\usepackage[utf8]{inputenc}
\usepackage{tikz-cd} 
\usepackage{tikz}
\usetikzlibrary{arrows,arrows.meta}
\tikzcdset{arrow style=tikz, diagrams={>=latex}}

\usepackage{etoolbox}

\usepackage{xcolor} 
\definecolor{green}{RGB}{0,127,0}
\definecolor{redd}{RGB}{191,0,0} 

\definecolor{red}{RGB}{105,89,205}
\usepackage[colorlinks=true]{hyperref}

\usepackage[notref, notcite]{showkeys} 
\usepackage[cmtip,arrow]{xy}

\DeclareMathOperator{\Aut}{Aut} 
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\Stab}{Stab} 
\DeclareMathOperator{\st}{st}
\DeclareMathOperator{\Flim}{Flim} 
\DeclareMathOperator{\Int}{{Int}}
\DeclareMathOperator{\rng}{{rng}}
\DeclareMathOperator{\dom}{{dom}}

\newcommand{\cupdot}{\mathbin{\mathaccent\cdot\cup}} 
\newcommand{\cC}{\mathcal C} 
\newcommand{\cV}{\mathcal{V}} 
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cG}{\mathcal{G}}
\newcommand{\bN}{\mathbb N} 
\newcommand{\bR}{\mathbb R}
\newcommand{\bZ}{\mathbb Z} 
\newcommand{\bQ}{\mathbb Q}
\newcommand{\bK}{\mathbb K}

\DeclareMathOperator{\im}{{Im}} 
\DeclareMathOperator{\lin}{{Lin}}
\DeclareMathOperator{\Th}{{Th}}

\newtheorem{theorem}{Theorem} 
\numberwithin{theorem}{section}
\newtheorem{lemma}[theorem]{Lemma} 
\newtheorem{claim}[theorem]{Claim}
\newtheorem{fact}[theorem]{Fact} 
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{conjecture}[theorem]{Conjecture} 
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{question}[theorem]{Question}
\newtheorem{corollary}[theorem]{Corollary} 
\newtheorem*{theorem2}{Theorem}
\newtheorem*{claim2}{Claim} 
\newtheorem*{corollary2}{Corollary}
\newtheorem*{question2}{Question} 
\newtheorem*{conjecture2}{Conjecture}


\newtheorem{clm}{Claim} \newtheorem*{clm*}{Claim}


\theoremstyle{definition} 
\newtheorem{definition}[theorem]{Definition}
\newtheorem*{definition2}{Definition} 
\newtheorem{example}[theorem]{Example}

\theoremstyle{remark} 
\newtheorem{remark}[theorem]{Remark}
\newtheorem*{remark2}{Remark}


\AtEndEnvironment{proof}{\setcounter{clm}{0}}
\newenvironment{clmproof}[1][\proofname]{\proof[#1]\renewcommand{\qedsymbol}{$\square$(claim)}}{\endproof}

\newcommand{\xqed}[1]{% \leavevmode\unskip\penalty9999 \hbox{}\nobreak\hfill
  \quad\hbox{\ensuremath{#1}}}


\title{Tytuł} 
\author{Franciszek Malinka}

\begin{document}
  \begin{abstract} 
    Abstract 
  \end{abstract} 
  \section{Introduction}

  \section{Preliminaries} 
  \subsection{Descriptive set theory}
  \begin{definition} 
    Suppose $X$ is a topological space and $A\subseteq X$.
    We say that $A$ is \emph{meagre} in $X$ if $A = \bigcup_{n\in\bN}A_n$,
    where $A_n$ are nowhere dense subsets of $X$ (i.e. $\Int(\bar{A_n})
    = \emptyset$).  
  \end{definition}

  \begin{definition} 
    We say that $A$ is \emph{comeagre} in $X$ if it is
    a complement of a meagre set. Equivalently, a set is comeagre iff it
    contains a countable intersection of open dense sets.  
  \end{definition}

      % \begin{example}
  Every countable set is meagre in any $T_1$ space, so, for example, $\bQ$
  is meagre in $\bR$ (though being dense), which means that the set of
  irrationals is comeagre. Another example is...
      % \end{example}

  \begin{definition}
    We say that a topological space $X$ is a \emph{Baire space} if every
    comeagre subset of $X$ is dense in $X$ (equivalently, every meagre set has
    empty interior).  
  \end{definition}

  \begin{definition}
    Suppose $X$ is a Baire space. We say that a property $P$ \emph{holds
    generically} for a point in $x\in X$ if $\{x\in X\mid P\textrm{ holds for
    }x\}$ is comeagre in $X$.  
  \end{definition}

  \begin{definition} Let $X$ be a nonempty topological space and let
    $A\subseteq X$. The \emph{Banach-Mazur game of $A$}, denoted as
    $G^{\star\star}(A)$ is defined as follows: Players $I$ and
    $\textit{II}$ take turns in playing nonempty open sets $U_0, V_0,
    U_1, V_1,\ldots$ such that $U_0 \supseteq V_0 \supseteq U_1 \supseteq
    V_1 \supseteq\ldots$. We say that player $\textit{II}$ wins the game if
    $\bigcap_{n}V_n \subseteq A$.  
  \end{definition}

  There is an important theorem on the Banach-Mazur game: $A$ is comeagre
  iff $\textit{II}$ can always choose sets $V_0, V_1, \ldots$ such that
  it wins. Before we prove it we need to define notions necessary to
  formalise and prove the theorem.

  \begin{definition}
    $T$ is \emph{the tree of all legal positions} in the Banach-Mazur game
    $G^{\star\star}(A)$ when $T$ consists of all finite sequences $(W_0,
    W_1,\ldots, W_n)$, where $W_i$ are nonempty open sets such that
    $W_0\supseteq W_1\supseteq\ldots\supseteq W_n$. In another words, $T$ is
    a pruned tree on $\{W\subseteq X\mid W \textrm{is open nonempty}\}$.
  \end{definition} 

  \begin{definition}
    We say that $\sigma$ is \emph{a pruned subtree} of the tree of all legal
    positions $T$ if $\sigma\subseteq T$ and for any $(W_0, W_1, \ldots,
    W_n)\in\sigma, n\ge 0$ there is a $W$ such that $(W_0, W_1,\ldots, W_n,
    W)\in\sigma$ (it simply means that there's no finite branch in~$\sigma$).  
  \end{definition}

  \begin{definition}
    Let $\sigma$ be a pruned subtree of the tree of all legal positions $T$. By
    $[\sigma]$ we denote \emph{the set of all infinite branches of $\sigma$},
    i.e. infinite sequences $(W_0, W_1, \ldots)$ such that $(W_0, W_1, \ldots
    W_n)\in \sigma$ for any $n\in \bN$.  
  \end{definition}

  \begin{definition} 
    A \emph{strategy} for $\textit{II}$ in
    $G^{\star\star}(A)$ is a pruned subtree $\sigma\subseteq T$ such that
    \begin{enumerate}[label=(\roman*)] 
      \item $\sigma$ is nonempty, 
      \item if $(U_0, V_0, \ldots, U_n, V_n)\in\sigma$, then for all open
      nonempty $U_{n+1}\subseteq V_n$, $(U_0, V_0, \ldots, U_n, V_n,
      U_{n+1})\in\sigma$, 
      \item if $(U_0, V_0, \ldots, U_{n})\in\sigma$, then for a unique $V_n$,
        $(U_0, V_0, \ldots,  U_{n}, V_n)\in\sigma$.
    \end{enumerate} 
  \end{definition}

  Intuitively, a strategy $\sigma$ works as follows: $I$ starts playing
  $U_0$ as any open subset of $X$, then $\textit{II}$ plays unique (by
  (iii)) $V_0$ such that $(U_0, V_0)\in\sigma$. Then $I$ responds by
  playing any $U_1\subseteq V_0$ and $\textit{II}$ plays uniqe $V_1$
  such that $(U_0, V_0, U_1, V_1)\in\sigma$, etc.

  \begin{definition} 
    A strategy $\sigma$ is a \emph{winning strategy for $\textit{II}$} if for
    any game $(U_0, V_0\ldots)\in [\sigma]$ player $\textit{II}$ wins, i.e.
    $\bigcap_{n}V_n \subseteq A$.
  \end{definition}

  Now we can state the key theorem.

  \begin{theorem}[Banach-Mazur, Oxtoby]
  \label{theorem:banach_mazur_thm} 
    Let $X$ be a nonempty topological space and let $A\subseteq X$. Then A is
    comeagre $\Leftrightarrow$ $\textit{II}$ has a winning strategy in
    $G^{\star\star}(A)$.
  \end{theorem}

  In order to prove it we add an auxilary definition and lemma.
  \begin{definition}
    Let $S\subseteq\sigma$ be a pruned subtree of tree of all legal positions
    $T$ and let $p=(U_0, V_0,\ldots, V_n)\in S$.  We say that S is
    \emph{comprehensive for p} if the family $\cV_p = \{V_{n+1}\mid (U_0,
    V_0,\ldots, V_n, U_{n+1}, V_{n+1})\in S\}$ (it may be that $n=-1$, which
    means $p=\emptyset$) is pairwise disjoint and $\bigcup\cV_p$ is dense in
    $V_n$ (where we think that $V_{-1} = X$).
    We say that $S$ is \emph{comprehensive} if it is comprehensive for
    each $p=(U_0, V_0,\ldots, V_n)\in S$.  
  \end{definition}

  \begin{fact} 
    If $\sigma$ is a winnig strategy for $\mathit{II}$ then
    there exists a nonempty comprehensive $S\subseteq\sigma$. 
  \end{fact}

  \begin{proof}
    We construct $S$ recursively as follows:
    \begin{enumerate} 
      \item $\emptyset\in S$, 
      \item if $(U_0, V_0, \ldots, U_n)\in S$, then $(U_0, V_0, \ldots, U_n,
        V_n)\in S$ for the unique $V_n$ given by the strategy $\sigma$, 
      \item let $p = (U_0, V_0, \ldots, V_n)\in S$. For a possible player $I$'s
        move $U_{n+1}\subseteq V_n$ let $U^\star_{n+1}$ be the unique set
        player $\mathit{II}$ would respond with by $\sigma$. Now, by Zorn's
        Lemma, let $\cU_p$ be a maximal collection of nonempty open subsets
        $U_{n+1}\subseteq V_n$ such that the set $\{U^\star_{n+1}\mid
        U_{n+1}\in\cU_p\}$ is pairwise disjoint.  Then put in $S$ all $(U_0,
        V_0, \ldots, V_{n}, U_{n+1})$ such that $U_{n+1} \in \cU_p$. This way
        $S$ is comprehensive for $p$: the family $\cV_p = \{V_{n+1}\mid (U_0,
        V_0,\ldots, V_n, U_{n+1}, V_{n+1})\in S\}$ is exactly
        $\{U^\star_{n+1}\mid U_{n+1}\in\cU_p\}$, which is pairwise disjoint and
        $\bigcup\cV_p$ is obviously dense in $V_n$ by the maximality of $\cU_p$
        -- if there was any open set $\tilde{U}_{n+1}\subseteq V_n$ disjoint
        from $\bigcup\cV_p$, then $\tilde{U}^{\star}_{n+1}\subseteq
        \tilde{U}_{n+1}$ would be also disjoint from $\bigcup\cV_p$, so the
        family $\cU_p\cup\{\tilde{U}_{n+1}\}$ would violate the maximality of
        $\cU_p$.  
      \qedhere 
    \end{enumerate} 
  \end{proof}

  \begin{lemma} 
    \label{lemma:comprehensive_lemma}
    Let $S$ be a nonempty comprehensive pruned subtree of a strategy $\sigma$.
    Then:
    \begin{enumerate}[label=(\roman*)]
      \item For any open $V_n\subseteq X$ there is at most one $p=(U_0, V_0,
        \ldots, U_n, V_n)\in S$.  
      \item Let $S_n = \{V_n\mid (U_0, V_0, \ldots, V_n)\in S\}$ for $n\in\bN$
        (i.e. $S_n$ is a family of all possible choices player $\textit{II}$
        can make in its $n$-th move according to $S$). Then $\bigcup S_n$ is
        open and dense in $X$.  
      \item $S_n$ is a family of pairwise disjoint sets.  
    \end{enumerate} 
  \end{lemma}

  \begin{proof} 
    (i): Suppose that there are some $p = (U_0, V_0,\ldots,
    U_n, V_n)$, $p'=(U'_0, V'_0, \ldots, U'_n, V'_n)$ such that $V_n
    = V'_n$ and $p \neq p'$. Let $k$ be the smallest index such that those
    sequences differ. We have two possibilities: 
    \begin{itemize} 
      \item $U_k = U'_k$ and $V_k\neq V'_k$ -- this cannot be true simply by
        the fact that $S$ is a subset of a strategy (so $V_k$ is unique for
        $U_k$). \item $U_k\neq U'_k$: by the comprehensiveness of $S$ we know 
        that for $q =(U_0, V_0, \ldots, U_{k-1}, V_{k-1})$ the set $\cV_q$ is 
        pairwise disjoint. Thus $V_k\cap V'_k=\emptyset$, because $V_k, V'_k\in 
        \cV_q$. But this leads to a contradiction -- $V_n$ cannot be a nonempty 
        subset of both $V_k, V'_k$.  
    \end{itemize}

    (ii): The lemma is proved by induction on $n$. For $n=0$ it follows
    trivially from the definition of comprehensiveness. Now suppose the
    lemma is true for $n$. Then the set $\bigcup_{V_n\in
    S_n}\bigcup\cV_{p_{V_n}}$ (where $p_{V_n}$ is given uniquely from
    (i)) is dense and open in $X$ by the induction hypothesis. But
    $\bigcup S_{n+1}$ is exactly this set, thus it is dense and open in
    $X$.

    (iii): We will prove it by induction on $n$. Once again, the case $n
    = 0$ follows from the comprehensiveness of $S$. Now suppose that the
    sets in $S_n$ are pairwise disjoint. Take some $x \in V_{n+1}\in
    S_{n+1}$. Of course $\bigcup S_n \supseteq \bigcup S_{n+1}$, thus by
    the inductive hypothesis $x\in V_{n}$ for the unique $V_n\in S_n$. It
    must be that $V_{n+1}\in \cV_{p_{V_n}}$, because $V_n$ is the only
    superset of $V_{n+1}$ in $S_n$. But $\cV_{p_{V_n}}$ is disjoint, so
    there is no other $V'_{n+1}\in \cV_{p_{V_n}}$ suc h that $x\in
    V'_{n+1}$. Moreover, there is no such set in
    $S_{n+1}\setminus\cV_{p_{V_n}}$, because those sets are disjoint from
    $V_{n}$. Hence there is no $V'_{n+1}\in S_{n+1}$ other than $V_n$
    such that $x\in V'_{n+1}$. We've chosen $x$ and $V_{n+1}$ arbitrarily,
    so $S_{n+1}$ is pairwise disjoint.  
  \end{proof}

  Now we can move to the proof of the Banach-Mazur theorem.

  \begin{proof}[Proof of theorem \ref{theorem:banach_mazur_thm}]
    $\Rightarrow$: Let $(A_n)$ be a sequence of dense open sets with
    $\bigcap_n A_n\subseteq A$.  The simply $\textit{II}$ plays $V_n
    = U_n\cap A_n$, which is nonempty by the denseness of $A_n$.

    $\Leftarrow$: Suppose $\textit{II}$ has a winning strategy $\sigma$.
    We will show that $A$ is comeagre. Take a comprehensive $S\subseteq
    \sigma$. We claim that $\mathcal{S} = \bigcap_n\bigcup S_n \subseteq
    A$. By the lemma~\ref{lemma:comprehensive_lemma}, (ii) sets $\bigcup
    S_n$ are open and dense, thus $A$ must be comeagre. Now we prove the
    claim towards contradiction. 
  
    Suppose there is $x\in \mathcal{S}\setminus A$. By the lemma
    \ref{lemma:comprehensive_lemma}, (iii) for any $n$ there is unique
    $x\in V_n\in S_n$. It follows that $p_{V_0}\subset
    p_{V_1}\subset\ldots$. Now the game $(U_0, V_0, U_1, V_1,\ldots)
    = \bigcup_n p_{V_n}\in [S]\subseteq [\sigma]$ is not winning for
  player $\textit{II}$, which contradicts the assumption that $\sigma$ is
  a winning strategy.  \end{proof}

  \begin{corollary} 
    \label{corollary:banach-mazur-basis} 
    If we add a constraint to the Banach-Mazur game such that players can only 
    choose basic open sets, then the theorem \ref{theorem:banach_mazur_thm} 
    still suffices.  
  \end{corollary}

  \begin{proof} 
    If one adds the word \textit{basic} before each occurrence
    of word \textit{open} in previous proofs and theorems then they all
    will still be valid (except for $\Rightarrow$, but its an easy fix --
    take $V_n$ a basic open subset of $U_n\cap A_n$).  
  \end{proof}

  This corollary will be important in using the theorem in practice --
  it's much easier to work with basic open sets rather than any open
  sets.

  \section{Fraïssé classes}

  In this section we will take a closer look at classes of finitely
  generated structures with some characteristic properties. More
  specifically, we will describe a concept developed by a French
  mathematician Roland Fraïssé called Fraïssé limit.

  \subsection{Definitions} 
  \begin{definition}
    Let $L$ be a signature and $M$ be an $L$-structure. The \emph{age} of $M$ is
    the class $\bK$ of all finitely generated structures that embedds into $M$.
    The age of $M$ is also associated with class of all structures embeddable in
    $M$ \emph{up to isomorphism}.
  \end{definition}

  \begin{definition}
    We say that $M$ has \emph{countable age} when its age has countably many 
    isomorphism types of finitely generated structures. 
  \end{definition}

  \begin{definition}
    Let $\bK$ be a class of finitely generated structures. $\bK$ has 
    \emph{hereditary property (HP)} if for any $A\in\bK$, any finitely generated
    substructure $B$ of $A$ it holds that $B\in\bK$. 
  \end{definition}

  \begin{definition}
    Let $\bK$ be a class of finitely generated structures. We say that $\bK$ has
    \emph{joint embedding property (JEP)} if for any $A, B\in\bK$ there is a
    structure $C\in\bK$ such that both $A$ and $B$ embed in $C$.
  \end{definition}

  Fraïssé has shown fundamental theories regarding age of a structure, one of 
  them being the following one:
  
  \begin{fact}
    \label{fact:age_is_hpjep}
    Suppose $L$ is a signature and $\bK$ is a nonempty finite or countable set 
    of finitely generated $L$-structures. Then $\bK$ has the HP and JEP if
    and only if $\bK$ is the age of some finite or countable structure. 
  \end{fact}

  Beside the HP and JEP Fraïssé has distinguished one more property of the 
  class $\bK$, namely amalgamation property.

  \begin{definition}
    Let $\bK$ be a class of finitely generated $L$-structures. We say that $\bK$
    has the \emph{amalgamation property (AP)} if for any $A, B, C\in\bK$ and
    embeddings $f\colon A\to B, g\colon A\to C$ there exists $D\in\bK$ together
    with embeddings $h\colon B\to D$ and $j\colon C\to D$ such that 
    $h\circ f = j\circ g$.
    \begin{center}
      \begin{tikzcd}
                                  & D & \\
        B \arrow[ur, dashed, "h"] &   & C \arrow[ul, dashed, "j"'] \\
                                  & A \arrow[ur, "g"'] \arrow[ul, "f"]
      \end{tikzcd}
    \end{center}
  \end{definition}

  \begin{definition}
    Let $M$ be an $L$-structure. $M$ is \emph{ultrahomogenous} if every
    isomorphism between finitely generated substrucutres of $M$ extends to an
    automorphism of $M$.
  \end{definition}

  Having those definitions we can provide the main Fraïssé theorem.

  \begin{theorem}[Fraïssé theorem]
    \label{theorem:fraisse_thm}
    Let L be a countable language and let $\bK$ be a nonempty countable set of
    finitely generated $L$-structures which has HP, JEP and AP. Then $\bK$ is 
    the age of a countable, ultrahomogenous $L$-structure $M$. Moreover, $M$ is
    unique up to isomorphism. We say that $M$ is a \emph{Fraïssé limit} of $\bK$
    and denote this by $M = \Flim(\bK)$.
  \end{theorem}

  This is a well known theorem. One can read a proof of this theorem in Wilfrid
  Hodges' classical book \textit{Model Theory}~\cite{hodges_1993}. In the proof
  of this theorem appears another, equally important \ref{lemma:weak_ultrahom}.

  \begin{definition}
    We say that an $L$-structure $M$ is \emph{weakly ultrahomogenous} if for any
    $A, B$ finitely generated substructures of $M$ such that $A\subseteq B$ and
    an embedding $f\colon A\to M$ there is an embedding $g\colon B\to M$ which
    extends $f$.
    \begin{center}
      \begin{tikzcd}
        A \arrow[d, "\subseteq"'] \arrow[r, "f"] & D \\
        B \arrow[ur, dashed, "g"']
      \end{tikzcd}
    \end{center}
  \end{definition}

  \begin{lemma}
    \label{lemma:weak_ultrahom}
    A countable structure is ultrahomogenous if and only if it is weakly
    ultrahomogenous.
  \end{lemma}

  This lemma will play a major role in the later parts of the paper. Weak
  ultrahomogenity is an easier and more intuitive property and it will prove
  useful when recursively constructing the generic automorphism of a Fraïssé 
  limit.

  % \begin{fact} If $\bK$ is a uniformly locally finite Fraïssé class, then
  % $\Flim(\bK)$ is $\aleph_0$-categorical and has quantifier elimination.
  % \end{fact}

  \subsection{Random graph} 
  
  In this section we'll take a closer look on a class of finite graphs, which
  form a Fraïssé class.

  \begin{proposition}
    Let $\cG$ be the class of all finite graphs. $\cG$ is a Fraïssé class.
  \end{proposition}
  \begin{proof}
    $\cG$ is of course countable (up to isomorphism) and has the HP 
    (graph substructure is also a graph). It has JEP: having two finite graphs 
    $G_1,G_2$ take their disjoint union $G_1\sqcup G_2$ as the extension of them
    both. $\cG$ has the AP. Having graphs $A, B, C$, where $B$ and $C$ are
    supergraphs of $A$, we can assume without loss of generality, that 
    $(B\setminus A) \cap (C\setminus A) = \emptyset$. Then 
    $A\sqcup (B\setminus A)\sqcup (C\setminus A)$ is the graph we're looking
    for (with edges as in B and C and without any edges between the disjoint
    parts).
  \end{proof}

  \begin{definition}
    The \emph{random graph} is the Fraïssé limit of the class of finite graphs
    $\cG$ denoted by $\Gamma = \Flim(\cG)$.
  \end{definition}

  The concept of the random graph emerges independently in many fields of
  mathematics. For example, one can construct the graph by choosing at random
  for each pair of verticies if they should be connected or not. It turns out
  that the graph constructed this way is exactly the random graph we described
  above.

  The random graph $\Gamma$ has one particular property that is unique to the
  random graph.

  \begin{fact}[random graph property]
    For each finite disjoint $X, Y\subseteq \Gamma$ there exists $v\in\Gamma$
    such that $\forall u\in X (vEu)$ and $\forall u\in Y (\neg vEu)$.
  \end{fact}
  \begin{proof}
    Take any finite disjoint $X, Y\subseteq\Gamma$. Let $G_{XY}$ be the
    subgraph of $\Gamma$ induced by the $X\cup Y$. Let $H = G_{XY}\cup \{w\}$,
    where $w$ is a new vertex that does not appear in $G_{XY}$. Also, $w$ is connected to 
    all verticies of $G_{XY}$ that come from $X$ and to none of those that come
    from $Y$. This graph is of course finite, so it is embeddable in $\Gamma$.
    Wihtout loss of generality assume that this embedding is simply inclusion. 
    Let $f$ be the partial isomorphism from $X\sqcup Y$ to $H$, with $X$ and
    $Y$ projected to the part of $H$ that come from $X$ and $Y$ respectively. 
    By the ultrahomogenity of $\Gamma$ this isomoprhism extends to an automorphism
    $\sigma\in\Aut(\Gamma)$. Then $v = \sigma^{-1}(w)$ is the vertex we sought. 
  \end{proof}

  \begin{fact}
    If a countable graph $G$ has the random graph property, then it is
    isomorhpic to the random graph $\Gamma$.
  \end{fact}
  \begin{proof}
    Enumerate verticies of both graphs: $\Gamma = \{a_1, a_2\ldots\}$ and $G
    = \{b_1, b_2\ldots\}$.
    We will construct a chain of partial isomorphisms $f_n\colon \Gamma\to G$
    such that $\emptyset = f_0\subseteq f_1\subseteq f_2\subseteq\ldots$ and $a_n \in
    \dom(f_n)$ and $b_n\in\rng(f_n)$.

    Suppose we have $f_n$. We seek $b\in G$ such that $f_n\cup \{\langle
    a_{n+1}, b\rangle\}$ is a partial isomoprhism. Let $X = \{a\in\Gamma\mid
    aE_{\Gamma} a_{n+1}\}\cap \dom{f_n}, Y = X^{c}\cap \dom{f_n}$, i.e. $X$ are
    verticies of $\dom{f_n}$ that are connected with $a_{n+1}$ in $\Gamma$ and
    $Y$ are those verticies that are not connected with $a_{n+1}$. Let $b$ be
    a vertex of $G$ that is connected to all verticies of $f_n[X]$ and to none
    $f_n[Y]$ (it exists by the random graph property). Then $f_n\cup \{\langle
    a_{n+1}, b\rangle\}$ is a partial isomoprhism. We find $a$ for the
    $b_{n+1}$ in the similar manner, so that $f_{n+1} = f_n\cup \{\langle
    a_{n+1}, b\rangle, \langle a, b_{n+1}\rangle\}$ is a partial isomorphism.

    $f = \bigcup^{\infty}_{n=0}f_n$ is an isomoprhism between $\Gamma$
    and $G$. Take any $a, b\in \Gamma$. Then for some big enough $n$ we have
    that $aE_{\Gamma}b\Leftrightarrow f_n(a)E_{G}f_n(b) \Leftrightarrow f(a)E_{G}f(b)$ .
  \end{proof}

  Using this fact one can show that the graph constructed in the probabilistic
  manner is in fact isomorphic to the random graph $\Gamma$.

  \begin{proposition}
    The class of finite graphs $\cG$ has the weak Hrushovski property. 
  \end{proposition}

  \begin{proof}
    It may be there some day, but it may not!
  \end{proof}

  \section{Conjugacy classes in automorphism groups}

  \subsection{Prototype: pure set} 
  In this section, $M=(M,=)$ is an infinite countable set (with no structure
  beyond equality).
  \begin{proposition} 
    If $f_1,f_2\in \Aut(M)$, then $f_1$ and $f_2$ are conjugate if and only 
    if for each $n\in \bN\cup \{\aleph_0\}$, $f_1$ and $f_2$ have the same 
    number of orbits of size $n$.
  \end{proposition}

  \begin{proposition} The conjugacy class of $f\in \Aut(M)$ is dense if
    and only if...  \end{proposition} \begin{proposition} If $f\in
  \Aut(M)$ has an infinite orbit, then the conjugacy class of $f$ is
  meagre.  
  \end{proposition}

  % \begin{proposition} 
    % An automorphism $f$ of $M$ is generic if and only if...
  % \end{proposition}

  % \begin{proof}

  % \end{proof}

  \subsection{More general structures}

  \begin{fact} 
    Suppose $M$ is an arbitrary structure and $f_1,f_2\in \Aut(M)$. 
    Then $f_1$ and $f_2$ are conjugate if and only if $(M,f_1)\cong
    (M,f_2)$ as structures with one additional unary relation that is
    an automorphism.  
  \end{fact}

  \begin{proof}
    Suppose that $f_1 = g^{-1}f_2g$ for some $g\in \Aut(M)$. 
    Then $g$ is the automorphism we're looking for. On the other hand if 
    $g\colon (M, f_1)\to (M, f_2)$ is an isomorphism, then 
    $g\circ f_1 = f_2 \circ g$ which exactly means that $f_1, f_2$ conjugate.
  \end{proof} 

  \begin{definition} We say that a Fraïssé class $\bK$ has \emph{weak
    Hrushovski property} (\emph{WHP}) if for every $A\in \bK$ and an isomorphism
    of substructures of $A$ $p\colon A\to A$, there is some $B\in \bK$ such 
    that $p$ can be extended to an automorphism of $B$, i.e.\ there is an 
    embedding $i\colon A\to B$ and a $\bar p\in \Aut(B)$ such that the following
    diagram commutes: 
    \begin{center} 
      \begin{tikzcd} 
        B\ar[r,dashed,"\bar p"]&B\\
        A\ar[u,dashed,"i"]\ar[r,"p"]&A\ar[u,dashed,"i"] 
      \end{tikzcd} 
    \end{center}
  \end{definition}

  % \begin{proposition} Suppose $\cC$ is a Fraïssé class in a relational
  % language with WHP. Then generically, for an $f\in \Aut(\Flim(\cC))$, all
  % orbits of $f$ are finite.  \end{proposition} \begin{proposition} Suppose
  %   $\cC$ is a Fraïssé class in an arbitrary countable language with WHP.
  %   Then generically, for an $f\in \Aut(\Flim(\cC))$ ...  \end{proposition}

    %   \begin{proposition} Generically, the set of fixed points of $f\in
  %   \Aut(M)$ is isomorphic to $M$ (as a graph).  \end{proposition}

  \printbibliography
\end{document}