aboutsummaryrefslogtreecommitdiff
path: root/sections/fraisse_classes.tex
diff options
context:
space:
mode:
Diffstat (limited to 'sections/fraisse_classes.tex')
-rw-r--r--sections/fraisse_classes.tex46
1 files changed, 20 insertions, 26 deletions
diff --git a/sections/fraisse_classes.tex b/sections/fraisse_classes.tex
index 0254280..1126dee 100644
--- a/sections/fraisse_classes.tex
+++ b/sections/fraisse_classes.tex
@@ -15,7 +15,7 @@
\end{definition}
\begin{definition}
- We say that a class $\cK$ of finitely generated strcutures
+ We say that a class $\cK$ of finitely generated structures
is \emph{essentially countable} if it has countably many isomorphism types
of finitely generated structures.
\end{definition}
@@ -40,7 +40,7 @@
\end{definition}
In terms of category theory we may say that $\cK$ is a category of finitely
- generated strcutures where morphims are embeddings of those strcutures.
+ generated structures where morphisms are embeddings of those structures.
Then the above diagram is a \emph{span} diagram in category $\cK$.
Fraïssé has shown fundamental theorems regarding age of a structure, one of
@@ -272,34 +272,34 @@
\begin{definition}
\label{definition:free_amalgamation}
- Let $L$ be a relational language and $\cK$ a class of $L$-strucutres.
+ Let $L$ be a relational language and $\cK$ a class of $L$-structures.
$\cK$ has \emph{free amalgamation} if for every
$A, B, C\in\cK$ such that $C = A\cap B$ the following diagram commutes:
\begin{center}
\begin{tikzcd}
- & A\sqcup B & \\
+ & A\sqcup_C B & \\
A \ar[ur, hook] & & B \ar[ul, hook'] \\
& C \ar[ur, hook] \ar[ul, hook'] &
\end{tikzcd}
\end{center}
- $A\sqcup B$ here is an $L$-strcuture with domain $A\cup B$ such that
+ and $A\sqcup_C B\in\cC$.
+ $A\sqcup_C B$ here is an $L$-structure with domain $A\cup B$ such that
for every $n$-ary symbol $R$ from $L$, $n$-tuple $\bar{a}\subseteq A\cup B$,
- we have that $A\sqcup B\models R(\bar{a})$ if and only if [$\bar{a}\subseteq A$ and
+ we have that $A\sqcup_C B\models R(\bar{a})$ if and only if [$\bar{a}\subseteq A$ and
$A\models R(\bar{a})$] or [$\bar{a}\subseteq B$ and $B\models R(\bar{a})$].
\end{definition}
- Actually we did already implicitly worked with free amalgamation in the
+ Actually we did already implicitly work with free amalgamation in the
Proposition \ref{proposition:finite-graphs-fraisse-class}, showing that
- the class of finite strcuture is indeed a Fraïssé class.
-
+ the class of finite graphs is indeed a Fraïssé class.
\subsection{Canonical amalgamation}
Recall, $\Cospan(\cC)$, $\Pushout(\cC)$ are the categories of cospan
and pushout diagrams of the category $\cC$. We have also denoted the notion
of cospans and pushouts with a fixed base structure $C$ denoted
- as $\Cospan_C(\cC)$ and $Pushout_C(\cC)$.
+ as $\Cospan_C(\cC)$ and $\Pushout_C(\cC)$.
\begin{definition}
\label{definition:canonical_amalgamation}
@@ -347,11 +347,15 @@
\end{itemize}
\end{definition}
- From now on in the paper, when $A$ is an $L$-strcuture and $\alpha$ is
+ \begin{remark}
+ Free amalgamation is canonical.
+ \end{remark}
+
+ From now on in the paper, when $A$ is an $L$-structure and $\alpha$ is
an automorphism of
- $A$, then by $(A, \alpha)$ we mean the strucutre $A$ expanded by the
- unary function corresping to $\alpha$, and $A$ constantly denotes the
- $L$-strucutre.
+ $A$, then by $(A, \alpha)$ we mean the structure $A$ expanded by the
+ unary function corresponding to $\alpha$, and $A$ constantly denotes the
+ $L$-structure.
\begin{theorem}
\label{theorem:canonical_amalgamation_thm}
@@ -377,19 +381,9 @@
\end{center}
Then, by the Fact \ref{fact:functor_iso}, $\otimes_C(\eta)$ is an automorphism
- of the pushout diagram:
-
- \begin{center}
- \begin{tikzcd}
- & A\otimes_C B \ar[loop above, "\delta"] & \\
- A \ar[ur] \ar[loop left, "\alpha"]& & B \ar[ul] \ar[loop right, "\beta"]\\
- & C \ar[ur] \ar[ul] \ar[loop below, "\gamma"] &
- \end{tikzcd}
- \end{center}
+ of the pushout diagram that looks exactly like the diagram in the second
+ point of the Definition \ref{definition:canonical_amalgamation}.
- TODO: ten diagram nie jest do końca taki jak trzeba, trzeba w zasadzie skopiować
- ten z definicji kanonicznej amalgamcji. Czy to nie będzie wyglądać źle?
-
This means that the morphism $\delta\colon A\otimes_C B\to A\otimes_C B$
has to be automorphism. Thus, by the fact that the diagram commutes,
we have the amalgamation of $(A, \alpha)$ and $(B, \beta)$ over $(C,\gamma)$