aboutsummaryrefslogtreecommitdiff
path: root/sections/fraisse_classes.tex
diff options
context:
space:
mode:
Diffstat (limited to 'sections/fraisse_classes.tex')
-rw-r--r--sections/fraisse_classes.tex21
1 files changed, 5 insertions, 16 deletions
diff --git a/sections/fraisse_classes.tex b/sections/fraisse_classes.tex
index 0254280..993ca73 100644
--- a/sections/fraisse_classes.tex
+++ b/sections/fraisse_classes.tex
@@ -277,13 +277,13 @@
$A, B, C\in\cK$ such that $C = A\cap B$ the following diagram commutes:
\begin{center}
\begin{tikzcd}
- & A\sqcup B & \\
+ & A\sqcup_C B & \\
A \ar[ur, hook] & & B \ar[ul, hook'] \\
& C \ar[ur, hook] \ar[ul, hook'] &
\end{tikzcd}
\end{center}
- $A\sqcup B$ here is an $L$-strcuture with domain $A\cup B$ such that
+ $A\sqcup_C B$ here is an $L$-strcuture with domain $A\cup B$ such that
for every $n$-ary symbol $R$ from $L$, $n$-tuple $\bar{a}\subseteq A\cup B$,
we have that $A\sqcup B\models R(\bar{a})$ if and only if [$\bar{a}\subseteq A$ and
$A\models R(\bar{a})$] or [$\bar{a}\subseteq B$ and $B\models R(\bar{a})$].
@@ -291,8 +291,7 @@
Actually we did already implicitly worked with free amalgamation in the
Proposition \ref{proposition:finite-graphs-fraisse-class}, showing that
- the class of finite strcuture is indeed a Fraïssé class.
-
+ the class of finite graphs is indeed a Fraïssé class.
\subsection{Canonical amalgamation}
@@ -377,19 +376,9 @@
\end{center}
Then, by the Fact \ref{fact:functor_iso}, $\otimes_C(\eta)$ is an automorphism
- of the pushout diagram:
+ of the pushout diagram that looks exaclty like the diagram in the second
+ point of the Definition \ref{definition:canonical_amalgamation}.
- \begin{center}
- \begin{tikzcd}
- & A\otimes_C B \ar[loop above, "\delta"] & \\
- A \ar[ur] \ar[loop left, "\alpha"]& & B \ar[ul] \ar[loop right, "\beta"]\\
- & C \ar[ur] \ar[ul] \ar[loop below, "\gamma"] &
- \end{tikzcd}
- \end{center}
-
- TODO: ten diagram nie jest do końca taki jak trzeba, trzeba w zasadzie skopiować
- ten z definicji kanonicznej amalgamcji. Czy to nie będzie wyglądać źle?
-
This means that the morphism $\delta\colon A\otimes_C B\to A\otimes_C B$
has to be automorphism. Thus, by the fact that the diagram commutes,
we have the amalgamation of $(A, \alpha)$ and $(B, \beta)$ over $(C,\gamma)$