aboutsummaryrefslogtreecommitdiff
path: root/sections/conj_classes.tex
diff options
context:
space:
mode:
Diffstat (limited to 'sections/conj_classes.tex')
-rw-r--r--sections/conj_classes.tex8
1 files changed, 5 insertions, 3 deletions
diff --git a/sections/conj_classes.tex b/sections/conj_classes.tex
index c72fd38..4732e3c 100644
--- a/sections/conj_classes.tex
+++ b/sections/conj_classes.tex
@@ -242,17 +242,19 @@
\subsection{Properties of the generic automorphism}
+ This key theorem yields some corollaries and we present one of them below.
+
Let $\cC$ be a Fraïssé class of finitely generated $L$-structures with
weak Hrushovski property and canonical amalgamation.
Let $\cD$ be the Fraïssé class (by the Theorem \ref{theorem:key-theorem}
of the structures of $\cC$ with additional automorphism of the structure).
Let $\Gamma = \Flim(\cC)$.
- \begin{proposition}
- \label{proposition:fixed_points}
+ \begin{corollary}
+ \label{corollary:fixed_points}
Let $\sigma$ be the generic automorphism of $\Gamma$. Then the set
of fixed points of $\sigma$ is isomorphic to $\Gamma$.
- \end{proposition}
+ \end{corollary}
\begin{proof}
Let $S = \{x\in \Gamma\mid \sigma(x) = x\}$. It is a substructure of $\Gamma$,