aboutsummaryrefslogtreecommitdiff
path: root/sections
diff options
context:
space:
mode:
authorFranciszek Malinka <franciszek.malinka@gmail.com>2022-08-24 23:07:30 +0200
committerFranciszek Malinka <franciszek.malinka@gmail.com>2022-08-24 23:07:30 +0200
commita15a0040023eb4f8f2b9d9653789063b86ccbe62 (patch)
treef14327c8a40e20ce077f1277e3174420c9a7d25e /sections
parent1fb3b8fe52bd8a9edd5121c9b468a015266a4880 (diff)
Extended introducion
Diffstat (limited to 'sections')
-rw-r--r--sections/examples.tex9
-rw-r--r--sections/introduction-pl.tex7
-rw-r--r--sections/introduction.tex9
3 files changed, 15 insertions, 10 deletions
diff --git a/sections/examples.tex b/sections/examples.tex
index 98a193b..fdb8c6a 100644
--- a/sections/examples.tex
+++ b/sections/examples.tex
@@ -160,11 +160,10 @@
is a Fraïssé class with WHP and CAP.
\end{example}
- The prove of this is relatively easy, knowing that there is essentially one
- vector space of every finite dimension and that every linear independent subset
- of a vector space can be extended to a basis of this space. The Fraïssé limit
- of $\cV$ is the $\omega$-dimensional vector space. Thus, by our key Theorem
- \ref{theorem:key-theorem} we know that it has a generic automorphism.
+ Vector spaces of the same dimension are isomorphic, thus it is obvious that
+ $\cV$ is essentially countable. Also $HP$ and $JEP$ are obvious, as we can
+ always embed space with smaller dimension into the bigger one. Amalgamation
+ works exactly the same. In fact, such amalgamation is indeed canonical.
\begin{example}
The class of all finite graphs $\cG$ is a Fraïssé class with WHP and free
diff --git a/sections/introduction-pl.tex b/sections/introduction-pl.tex
index 7e8243e..dca6599 100644
--- a/sections/introduction-pl.tex
+++ b/sections/introduction-pl.tex
@@ -38,6 +38,9 @@
grami Banacha-Mazura, które są dobrze znanym narzędziem w deskryptywnej
teorii mnogości.
- % Opisana konstrukcja generycznego automorfizmu okazuje się pomocna w dowodzeniu
- % niektórych własności tego automorfizmu (patrz \ref{proposition:fixed_points}).
+ Opisana konstrukcja generycznego automorfizmu okazuje się pomocna w dowodzeniu
+ niektórych własności tego automorfizmu (patrz \ref{proposition:fixed_points}).
+ W ostatnim rozdziale przytaczamy przykłady klas Fraïsségo ze słabą własnością
+ Hrushovskiego i kanoniczną amalgamacją oraz charakteryzujemy ich granice
+ oraz generyczny automorfizm.
\end{document}
diff --git a/sections/introduction.tex b/sections/introduction.tex
index 8886847..57b8de1 100644
--- a/sections/introduction.tex
+++ b/sections/introduction.tex
@@ -37,7 +37,10 @@
this by using the Banach-Mazur games, a well known method in the descriptive
set theory, which proves useful in the study of comeagre sets.
- % Finally, we show how this construction of the generic automorphism can be
- % used to deduce some properties of generic automorphisms
- % (see \ref{proposition:fixed_points}, (COŚ JESZCE)).
+ Finally, we show how this construction of the generic automorphism can be
+ used to deduce some properties of generic automorphisms
+ (see \ref{proposition:fixed_points}). In the last section we give examples
+ and anti-examples of Fraïssé classes with weak Hrushovski property and
+ canonical amalgamation, characterize Fraïssé limits and generic automorphism
+ of these classes.
\end{document}