diff options
author | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-03-27 20:45:01 +0200 |
---|---|---|
committer | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-03-27 20:45:01 +0200 |
commit | 3e1cedd7a778548ab15148ce820e7f90620a5af4 (patch) | |
tree | ef6463eaad50de4c5bd5dac0731a1d69f5fc09a1 /lic_malinka.tex | |
parent | 930d96d3091323e34a9c35dbc58d377666c3311e (diff) |
Zaczątki klasy fraissego dla grafow z automorfizmem
Diffstat (limited to 'lic_malinka.tex')
-rw-r--r-- | lic_malinka.tex | 34 |
1 files changed, 33 insertions, 1 deletions
diff --git a/lic_malinka.tex b/lic_malinka.tex index ede7008..6200d4c 100644 --- a/lic_malinka.tex +++ b/lic_malinka.tex @@ -51,13 +51,15 @@ \newcommand{\cV}{\mathcal{V}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cG}{\mathcal{G}}
+\newcommand{\cH}{\mathcal{H}}
\newcommand{\bN}{\mathbb N}
\newcommand{\bR}{\mathbb R}
\newcommand{\bZ}{\mathbb Z}
\newcommand{\bQ}{\mathbb Q}
-\newcommand{\bK}{\mathbb K}
+\newcommand{\bK}{\mathcal K}
\DeclareMathOperator{\im}{{Im}}
+\DeclareMathOperator{\id}{{id}}
\DeclareMathOperator{\lin}{{Lin}}
\DeclareMathOperator{\Th}{{Th}}
@@ -544,6 +546,36 @@ It may be there some day, but it may not!
\end{proof}
+ \subsection{Graphs with automorphism}
+ The language and theory of unordered graphs is fairly simple. We extend the
+ language by one unary symbol $\sigma$ and interpret it as an arbitrary
+ automorphism on the graph structure. It turns out that the class of such
+ structures forms a Fraïssé class.
+
+ \begin{proposition}
+ Let $\cH$ be the class of all finite graphs with automorphism, i.e.
+ structures in the language $(E, \sigma)$ such that $E$ is a symmetric
+ relation and $\sigma$ is an automorphism on the structure. $\cH$ is
+ a Fraïssé class.
+ \end{proposition}
+ \begin{proof}
+ Countability and HP are obivous, JEP follows by the same argument as in
+ plain graphs. We need to show that the class has the amalgamation property.
+
+ Take any graphs $(A, \alpha), (B, \beta), (C,\gamma)$ such that $A$ embedds
+ into $B$ and $C$. Let $D$ be the amalgamation of $B$ and $C$ over $A$ as in
+ the proof for the plain graphs. We will define the automorphis
+ $\delta\in\Aut(D)$ so it extends $\beta$ and $\gamma$. (TODO: chyba nie
+ tylko extends ale coś więcej: wiem o co chodzi, ale nie wiem jak to
+ napisać) We let $\delta_{\upharpoonright X} = \id_X$ for $X\in \{A,
+ B\setminus A, C\setminus B\}$. Let's check the definition is correct. In
+ order to do that, we have to show that for any $u, v\in
+ D (uE_Dv\leftrightarrow \delta(u)E_D\delta(v))$. We have a few cases:
+ \begin{itemize}
+ \item
+ \end{itemize}
+ \end{proof}
+
\section{Conjugacy classes in automorphism groups}
\subsection{Prototype: pure set}
|