From 3e1cedd7a778548ab15148ce820e7f90620a5af4 Mon Sep 17 00:00:00 2001 From: Franciszek Malinka Date: Sun, 27 Mar 2022 20:45:01 +0200 Subject: =?UTF-8?q?Zacz=C4=85tki=20klasy=20fraissego=20dla=20grafow=20z=20?= =?UTF-8?q?automorfizmem?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- lic_malinka.tex | 34 +++++++++++++++++++++++++++++++++- 1 file changed, 33 insertions(+), 1 deletion(-) (limited to 'lic_malinka.tex') diff --git a/lic_malinka.tex b/lic_malinka.tex index ede7008..6200d4c 100644 --- a/lic_malinka.tex +++ b/lic_malinka.tex @@ -51,13 +51,15 @@ \newcommand{\cV}{\mathcal{V}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cG}{\mathcal{G}} +\newcommand{\cH}{\mathcal{H}} \newcommand{\bN}{\mathbb N} \newcommand{\bR}{\mathbb R} \newcommand{\bZ}{\mathbb Z} \newcommand{\bQ}{\mathbb Q} -\newcommand{\bK}{\mathbb K} +\newcommand{\bK}{\mathcal K} \DeclareMathOperator{\im}{{Im}} +\DeclareMathOperator{\id}{{id}} \DeclareMathOperator{\lin}{{Lin}} \DeclareMathOperator{\Th}{{Th}} @@ -544,6 +546,36 @@ It may be there some day, but it may not! \end{proof} + \subsection{Graphs with automorphism} + The language and theory of unordered graphs is fairly simple. We extend the + language by one unary symbol $\sigma$ and interpret it as an arbitrary + automorphism on the graph structure. It turns out that the class of such + structures forms a Fraïssé class. + + \begin{proposition} + Let $\cH$ be the class of all finite graphs with automorphism, i.e. + structures in the language $(E, \sigma)$ such that $E$ is a symmetric + relation and $\sigma$ is an automorphism on the structure. $\cH$ is + a Fraïssé class. + \end{proposition} + \begin{proof} + Countability and HP are obivous, JEP follows by the same argument as in + plain graphs. We need to show that the class has the amalgamation property. + + Take any graphs $(A, \alpha), (B, \beta), (C,\gamma)$ such that $A$ embedds + into $B$ and $C$. Let $D$ be the amalgamation of $B$ and $C$ over $A$ as in + the proof for the plain graphs. We will define the automorphis + $\delta\in\Aut(D)$ so it extends $\beta$ and $\gamma$. (TODO: chyba nie + tylko extends ale coś więcej: wiem o co chodzi, ale nie wiem jak to + napisać) We let $\delta_{\upharpoonright X} = \id_X$ for $X\in \{A, + B\setminus A, C\setminus B\}$. Let's check the definition is correct. In + order to do that, we have to show that for any $u, v\in + D (uE_Dv\leftrightarrow \delta(u)E_D\delta(v))$. We have a few cases: + \begin{itemize} + \item + \end{itemize} + \end{proof} + \section{Conjugacy classes in automorphism groups} \subsection{Prototype: pure set} -- cgit v1.2.3