aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorFranciszek Malinka <franciszek.malinka@gmail.com>2022-02-15 21:50:25 +0100
committerFranciszek Malinka <franciszek.malinka@gmail.com>2022-02-15 21:50:25 +0100
commit87b6137f59c74e6e52fa4bf761b5ec1ad8fcab7a (patch)
tree300b7e060cdc21cbecb9cf3cb1c62464b96a5973
parent6423bfc8e832c6925074bee71d69b54b862ecf1b (diff)
Poprawa usterki faktu
-rw-r--r--lic_malinka.pdfbin316808 -> 316851 bytes
-rw-r--r--lic_malinka.tex4
2 files changed, 2 insertions, 2 deletions
diff --git a/lic_malinka.pdf b/lic_malinka.pdf
index bc6add8..b58ba11 100644
--- a/lic_malinka.pdf
+++ b/lic_malinka.pdf
Binary files differ
diff --git a/lic_malinka.tex b/lic_malinka.tex
index 24e3008..0b03eb7 100644
--- a/lic_malinka.tex
+++ b/lic_malinka.tex
@@ -193,7 +193,7 @@
\begin{enumerate}
\item $\emptyset\in S$,
\item if $(U_0, V_0, \ldots, U_n)\in S$, then $(U_0, V_0, \ldots, U_n, V_n)\in S$ for the unique $V_n$ given by the strategy $\sigma$,
- \item let $p = (U_0, V_0, \ldots, V_n)\in S$. For a possible player $I$'s move $U_{n+1}\subseteq V_n$ let $U^\star_{n+1}$ be the unique set player $\mathit{II}$ would respond with by $\sigma$. Now, by Zorn's Lemma, let $\cU_p$ be a maximal collection of nonempty open subsets $U_{n+1}\subseteq V_n$ such that the set $\{U^\star_{n+1}\mid U_{n+1}\in\cU_p\}$ is pairwise disjoint. Then put in $S$ all $(U_0, V_0, \ldots, V_{n}, U_{n+1})$ such that $U_{n+1} \in \cU_p$. This way $S$ is comprehensive for $p$: the family $\cV_p = \{V_{n+1}\mid (U_0, V_0,\ldots, V_n, U_{n+1}, V_{n+1})\in S\}$ is exactly $\{U^\star_{n+1}\mid U_{n+1}\in\cU_p\}$, which is pairwise disjoint and $\bigcup\cV_p$ is obviously dense in $V_n$ by its maximality -- if there was any open set $\tilde{U}_{n+1}\subseteq V_n$ disjoint from $\bigcup\cU_p$, then the family $\cU_p\cup\{\tilde{U}_{n+1}\}$ would violate the maximality of $\cU_p$.
+ \item let $p = (U_0, V_0, \ldots, V_n)\in S$. For a possible player $I$'s move $U_{n+1}\subseteq V_n$ let $U^\star_{n+1}$ be the unique set player $\mathit{II}$ would respond with by $\sigma$. Now, by Zorn's Lemma, let $\cU_p$ be a maximal collection of nonempty open subsets $U_{n+1}\subseteq V_n$ such that the set $\{U^\star_{n+1}\mid U_{n+1}\in\cU_p\}$ is pairwise disjoint. Then put in $S$ all $(U_0, V_0, \ldots, V_{n}, U_{n+1})$ such that $U_{n+1} \in \cU_p$. This way $S$ is comprehensive for $p$: the family $\cV_p = \{V_{n+1}\mid (U_0, V_0,\ldots, V_n, U_{n+1}, V_{n+1})\in S\}$ is exactly $\{U^\star_{n+1}\mid U_{n+1}\in\cU_p\}$, which is pairwise disjoint and $\bigcup\cV_p$ is obviously dense in $V_n$ by the maximality of $\cU_p$ -- if there was any open set $\tilde{U}_{n+1}\subseteq V_n$ disjoint from $\bigcup\cV_p$, then $\tilde{U}^{\star}_{n+1}\subseteq \tilde{U}_{n+1}$ would be also disjoint from $\bigcup\cV_p$, so the family $\cU_p\cup\{\tilde{U}_{n+1}\}$ would violate the maximality of $\cU_p$ .
\qedhere
\end{enumerate}
\end{proof}
@@ -217,7 +217,7 @@
(ii): The lemma is proved by induction on $n$. For $n=0$ it follows trivially from the definition of comprehensiveness. Now suppose the lemma is true for $n$. Then the set $\bigcup_{V_n\in S_n}\bigcup\cV_{p_{V_n}}$ (where $p_{V_n}$ is given uniquely from (i)) is dense and open in $X$ by the induction hypothesis. But $\bigcup S_{n+1}$ is exactly this set, thus it is dense and open in $X$.
- (iii): We will prove it by induction on $n$. Once again, the case $n = 0$ follows from the comprehensiveness of $S$. Now suppose that the sets in $S_n$ are pairwise disjoint. Take some $x \in V_{n+1}\in S_{n+1}$. Of course $\bigcup S_n \supseteq \bigcup S_{n+1}$, thus by the inductive hypothesis $x\in V_{n}$ for the unique $V_n\in S_n$. It must be that $V_{n+1}\in \cV_{p_{V_n}}$, because $V_n$ is the only superset of $V_{n+1}$ in $S_n$. But $\cV_{p_{V_n}}$ is disjoint, so there is no other $V'_{n+1}\in \cV_{p_{V_n}}$ such that $x\in V'_{n+1}$. Moreover, there is no such set in $S_{n+1}\setminus\cV_{p_{V_n}}$, because those sets are disjoint from $V_{n}$. Hence there is no $V'_{n+1}\in S_{n+1}$ other than $V_n$ such that $x\in V'_{n+1}$. We chosed $x$ and $V_{n+1}$ arbitrarily, so $S_{n+1}$ is pairwise disjoint.
+ (iii): We will prove it by induction on $n$. Once again, the case $n = 0$ follows from the comprehensiveness of $S$. Now suppose that the sets in $S_n$ are pairwise disjoint. Take some $x \in V_{n+1}\in S_{n+1}$. Of course $\bigcup S_n \supseteq \bigcup S_{n+1}$, thus by the inductive hypothesis $x\in V_{n}$ for the unique $V_n\in S_n$. It must be that $V_{n+1}\in \cV_{p_{V_n}}$, because $V_n$ is the only superset of $V_{n+1}$ in $S_n$. But $\cV_{p_{V_n}}$ is disjoint, so there is no other $V'_{n+1}\in \cV_{p_{V_n}}$ suc h that $x\in V'_{n+1}$. Moreover, there is no such set in $S_{n+1}\setminus\cV_{p_{V_n}}$, because those sets are disjoint from $V_{n}$. Hence there is no $V'_{n+1}\in S_{n+1}$ other than $V_n$ such that $x\in V'_{n+1}$. We chosed $x$ and $V_{n+1}$ arbitrarily, so $S_{n+1}$ is pairwise disjoint.
\end{proof}
Now we can move to the proof of the Banach-Mazur theorem.