diff options
author | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-05-03 12:45:25 +0200 |
---|---|---|
committer | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-05-03 12:45:25 +0200 |
commit | 80d1346f17a3ae138cf84cb25f27a6ff6ccf4696 (patch) | |
tree | 48f14b17b639aa82e5450d8176549f81e52e5af2 | |
parent | 0f0aa2c9737f4a3f45534ecd4a65af1bd7c86cf8 (diff) |
Permutacje komizernosc
-rw-r--r-- | lic_malinka.pdf | bin | 387328 -> 391744 bytes | |||
-rw-r--r-- | lic_malinka.tex | 58 |
2 files changed, 52 insertions, 6 deletions
diff --git a/lic_malinka.pdf b/lic_malinka.pdf Binary files differindex 61814b9..2c4447f 100644 --- a/lic_malinka.pdf +++ b/lic_malinka.pdf diff --git a/lic_malinka.tex b/lic_malinka.tex index d38f36e..fe992a1 100644 --- a/lic_malinka.tex +++ b/lic_malinka.tex @@ -648,20 +648,66 @@ \section{Conjugacy classes in automorphism groups}
+ TODO:
+ \begin{itemize}
+ \item w głównym dowodzie mogę użyć wprost AP, nie muszę tego uzasadniać
+ jeszcze raz.
+ \end{itemize}
+
+ Let $M$ be a countable $L$-structure. We define a topology on the $G=\Aut(M)$:
+ for any finite function $f\colon M\to M$ we have a basic open set
+ $[f]_{G} = \{g\in G\mid f\subseteq g\}$.
+
\subsection{Prototype: pure set}
In this section, $M=(M,=)$ is an infinite countable set (with no structure
beyond equality).
+
\begin{proposition}
- If $f_1,f_2\in \Aut(M)$, then $f_1$ and $f_2$ are conjugate if and only
+ If $f_1,f_2\in \Aut(M)$, then $f_1$ and $f_2$ are conjugate if and only
if for each $n\in \bN\cup \{\aleph_0\}$, $f_1$ and $f_2$ have the same
number of orbits of size $n$.
\end{proposition}
- \begin{proposition} The conjugacy class of $f\in \Aut(M)$ is dense if
- and only if... \end{proposition} \begin{proposition} If $f\in
- \Aut(M)$ has an infinite orbit, then the conjugacy class of $f$ is
- meagre.
- \end{proposition}
+ \begin{theorem}
+ Let $\sigma\in \Aut(M)$ be an automorphism with no infinite orbit and with
+ infinitely many orbits of size $n$ for every $n>0$. Then the conjugacy
+ class of $\sigma$ is comeagre in $\Aut(M)$.
+ \end{theorem}
+
+ \begin{proof}
+ We will show that the conjugacy class of $\sigma$ is an intersection of countably
+ many comeagre sets.
+
+ Let $A_n = \{\alpha\in Aut(M)\mid \alpha\text{ has infinitely many orbits of size }n\}$.
+ This set is comeagre for every $n>0$. Indeed, we can represent this set
+ as an intersection of countable family of open dense sets. Let $B_{n,k}$
+ be the set of all finite functions $\beta\colon M\to M$ that consists
+ of exactly $k$ distinct $n$-cycles. Then:
+ \begin{align*}
+ A_n &= \{\alpha\in\ \Aut(M) \mid \alpha\text{ has infinitely many orbits of size }n\} \\
+ &= \bigcap_{k=1}^{\infty} \{\alpha\in \Aut(M)\mid \alpha\text{ has at least }k\text{ orbits of size }n\} \\
+ &= \bigcap_{k=1}^{\infty} \bigcup_{\beta\in B_{n,k}} [\beta]_{\Aut(M)},
+ \end{align*}
+ where indeed, $\bigcup_{\beta\in B_{n,k}} [\beta]_{\Aut(M)}$ is dense in
+ $\Aut(M)$: take any finite $\gamma\colon M\to M$ such that $[\gamma]_{\Aut(M)}$
+ is nonempty. Then also
+ $\bigcup_{\beta\in B_{n,k}} [\beta]_{\Aut(M)}\cap[\gamma]_{\Aut(M)}\neq\emptyset$,
+ one can easily construct a permutation that extends $\gamma$ and have at least
+ $k$ many $n$-cycles.
+
+ Now we see that $A = \bigcap_{n=1}^{\infty} A_n$ is a comeagre set consisting
+ of all functions that have infinitely many $n$-cycles for each $n$. The only
+ thing left to show is that the set of functions with no infinite cycle is
+ also comeagre. Indeed, for $m\in M$ let
+ $B_m = \{\alpha\in\Aut(M)\mid m\text{ has finite orbit in }\alpha\}$. This
+ is an open dense set. It is a sum over basic open sets generated by finite
+ permutations with $m$ in their domain. Denseness is also easy to see.
+
+ Finally, we can say that
+ $$\sigma^{\Aut(M)}=\bigcap_{n=1}^\infty A_n \cap \bigcap_{m\in M} B_m,$$
+ which concludes the proof.
+
+ \end{proof}
% \begin{proposition}
% An automorphism $f$ of $M$ is generic if and only if...
|