diff options
author | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-07-05 22:16:39 +0200 |
---|---|---|
committer | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-07-05 22:16:39 +0200 |
commit | 43d8381bf8e71d3418f861bc73a8acafa2f25a10 (patch) | |
tree | 29a58389574db77133507d374e80470229d7eed5 | |
parent | 14de439d475ec315ae40c85f813036e5568a019f (diff) |
Introduction scratch
-rw-r--r-- | lic_malinka.pdf | bin | 419937 -> 463373 bytes | |||
-rw-r--r-- | lic_malinka.tex | 29 | ||||
-rw-r--r-- | sections/fraisse_classes.tex | 4 | ||||
-rw-r--r-- | sections/introduction.tex | 30 |
4 files changed, 60 insertions, 3 deletions
diff --git a/lic_malinka.pdf b/lic_malinka.pdf Binary files differindex dc875f1..4fbb6bf 100644 --- a/lic_malinka.pdf +++ b/lic_malinka.pdf diff --git a/lic_malinka.tex b/lic_malinka.tex index 96f97a3..a469805 100644 --- a/lic_malinka.tex +++ b/lic_malinka.tex @@ -113,6 +113,35 @@ \author{Franciszek Malinka}
\begin{document}
+ \newpage
+ \thispagestyle{empty}
+ \begin{center}
+ \textbf{\large Uniwersytet Wrocławski\\
+ Wydział Matematyki i Informatyki\\
+ Instytut Matematyczny}\\
+ \textit{\large specjalność: ISIM}\\
+ \vspace{4cm}
+ \textbf{\textit{\large Franciszek Malinka}}\\
+ \vspace{0.5cm}
+ {\Large Generic automorphisms as Fraïssé limits}\\
+ \end{center}
+ \vspace{3cm}
+ {\large \hspace*{6.5cm}Praca licencjacka\\
+ \hspace*{6.5cm}napisana pod kierunkiem\\
+ \hspace*{6.5cm}dra Tomasza Rzepeckiego}\\
+ \vfill
+ \begin{center}
+ {\large Wrocław 2022}\\
+ \end{center}
+
+ \newpage
+ \thispagestyle{empty}
+ \begin{center}
+ \textit{This page is intentionally left blank}\\
+ \end{center}
+ \vfill
+ \newpage
+
\begin{abstract}
Abstract
\end{abstract}
diff --git a/sections/fraisse_classes.tex b/sections/fraisse_classes.tex index ca2247e..9110f44 100644 --- a/sections/fraisse_classes.tex +++ b/sections/fraisse_classes.tex @@ -9,7 +9,7 @@ \subsection{Definitions} \begin{definition} Let $L$ be a signature and $M$ be an $L$-structure. The \emph{age} of $M$ is - the class $\bK$ of all finitely generated structures that embeds into $M$. + the class $\bK$ of all finitely generated structures that embed into $M$. The age of $M$ is also associated with class of all structures embeddable in $M$ \emph{up to isomorphism}. \end{definition} @@ -63,7 +63,7 @@ \begin{tikzcd} & D & \\ A \arrow[ur, dashed, "g"] & & B \arrow[ul, dashed, "h"'] \\ - & C \arrow[ur, "f"'] \arrow[ul, "e"] + & C \arrow[ur, "f"'] \arrow[ul, "e"] & \end{tikzcd} \end{center} \end{definition} diff --git a/sections/introduction.tex b/sections/introduction.tex index 89004c7..aedc345 100644 --- a/sections/introduction.tex +++ b/sections/introduction.tex @@ -1,5 +1,33 @@ \documentclass[../lic_malinka.tex]{subfiles} \begin{document} - There will be something! + Model theory is a field of mathematics that classify and construct + structures with particular properties. It desribes classical mathematical + objects in a broader context, abstract their properties and study + connections between simingly unrelated structures. Roland Fraïssé was + French logician who established many important notions in contemporary + model theory. He was one of the first to utilize back-and-forth argument, + a fundamental model theoretical method in construction of + elementary equivalent structures. The Ehrenfeuht-Fraïssé games is a + concept that proved useful in classical logic, model theory, but also + finite model theory (which is a filed of theoretical informatics rather + than mathematics). + + This work study limits of Fraïssé classes with additional combinatorial + and categorical properties. The key theorem \ref{theorem:generic_aut_general} + says that a Fraïssé class with canonical amalgamation and weak Hrushovsky + property has a generic automorphism. This result was known before, + for example [DODAC GDZIE TO BYLO...]. However, we show a new way to construct + a generic automorphism by extending the structures of the class by an + automorphism and considering limit of such extended Fraïssé class. We achieve + this by using the Banach-Mazur games, a well known objects of general topology + which prove useful in study of comeager sets. + + The prototype structure of the paper is the random graph (also known as the + Rado graph), the Fraïssé limit of the class of finite undirected graphs. + It serves as a useful example, gives an intuition of the Fraïssé limits, + weak Hrushovsky property and free amalgamation. + + + \end{document} |