$\delta = \delta(x, y), \varphi, \psi$ always denote formulas of L.

- 1. Assume that $\varphi(x, y)$ i $\psi(x, y)$ are stable. Prove that $\neg \varphi(x, y)$, $\varphi \land \psi(x, y)$ and $\chi(y, x) = \varphi(x, y)$ are also stable.
- 2. For types p, q prove that: (a) $(p \lor q)(\mathcal{M}) = p(\mathcal{M}) \cup q(\mathcal{M}),$ (b) $\exists xp(x, y)(\mathcal{M}) = \{b \in \mathcal{M} : \exists a \in \mathcal{M} \models p(a, b)\}.$ (c) $\forall xp(x, y)(\mathcal{M}) = \{b \in \mathcal{M} : \forall a \in \mathcal{M} \models p(a, b)\}.$
- 3. Let $p \in S_{\delta}(M)$. Prove that $R_{\delta}(p) = CB_{\delta}(p)$.
- 4. Assume that $\chi(y)$ is a δ -definition of type $p \in S_{\delta}(M)$ and $M \prec N$. Prove that there is a unique type $q \in S_{\delta}(N)$ such that χ is a δ -definition of q.
- 5. Assume that T is stable, p ∈ S(M).
 (a) Prove that there is a unique type q ∈ S(M) such that for every δ(x, y), the δ-definition of type p is the δ-definition of type q.
 For A ⊇ M we define p_A = q|A.
 (b) Assume U is an ultrafilter on M (that is, in the algebra of all subsets of M) such that {φ(M) : φ ∈ p} ⊆ U. Prove that for every ψ(y) ∈ q, ψ(M) ∩ M ∈ U. (That means that for stable T, the type p_A corresponds to the type from the problem from list 5 and does not depend on the choice of U).
 (c) Prove that R_δ(p) = R_δ(q) oraz R_{δ,2}(p) = R_{δ,2}(q), for every δ(x, y).