Model Theory, list 7.

- 1. Prove that if $a \in acl(Ab)$, then $RM(a/A) \leq RM(b/A)$.
- 2. Prove that tp(ab/A) is s-isolated $\iff tp(a/A)$ is s-isolated and tp(b/Aa) is s-isolated.
- 3. Assume that $p \in S(A)$, $RM(p) < \infty$ i $A \subseteq B$. Prove that

$$Mlt(p) = \sum \{Mlt(q) : p \subseteq q \in S(B) \text{ i } RM(q) = RM(p)\}$$

(in particular over B there are $\leq Mlt(p)$ complete extensions of type p of the same Morley rank).

- 4. Assume that T has no Vaughtian pair. Prove that for every $\varphi(x, \overline{y}) \in L$ there is $n < \omega$ such that for every $\overline{a} \subset \mathcal{M}$, $|\varphi(\mathcal{M}, \overline{a})| < \aleph_0 \Rightarrow |\varphi(\mathcal{M}, \overline{a})| < n$. (hint: if there is no such n, consider a theory describing a Vaughtoan trople $(M, N, \varphi(x, \overline{c}), usung a new predicate symbol and new constant symbol).$
- 5. Assume that T is ℵ₀-stable. Let M be a prime model of T.
 (a) Prove that there is a non-algebraic formula φ(x) ∈ L(M) such that for every formula ψ(x) ∈ L(M), one of the formulas φ ∧ ψ, varphi ∧ ¬ψ is algebraic. (hint: consider a type p ∈ S(M) of Cantor-Bendixson rank 1.)
 (b) Assuming additionally that T has no Vaughtian pair prove that the formula φ from point (a) is strongly minimal. (hint: use the previous problem).
- 6. Prove that if M is \aleph_0 -saturated, $p \in S(M)$ and $RM(p) < \infty$, then Mlt(p) = 1. (hint: the assumption of \aleph_0 -saturation may be omitted, but the proof is rather hard, later).
- 7. Assume that $A, B \subset \mathcal{M}$ and $f : A \to B$ is an elementary surjection. Prove that f extends to an elementary function $f' : acl(A) \to acl(B)$. Prove that f' is onto. Is f' unique?