Model Theory, list 4.

- 1. Prove that if T is q.e., then
 - (a) for all $M, N \models T, M \subseteq N$ (i.e. "M is a substructure of N") implies $M \prec N$,
 - (b) every monomorphism $f: M \to N$ is elementary.
- 2. Prove that if T is κ -stable, then $|S_n(A)| \leq \kappa$ for every $n < \omega$ and every A of power $\leq \kappa$.
- 3. Describe complete 1-types over M (facultatively, for fans, complete n-types over M) and topology of the space $S_1(M)$ for $M \models T$ for the following theories T:
 - (a) $T = Th(\mathbb{Q}, \leq),$
 - (b) $T = Th(\mathbb{N}, S)$, (c) $T = Th(\mathbb{Z}, S)$,
 - (d) the theory of independent predicates (Problem 3.12)
 - (e) the theory of independent equivalence relations with 2 equivalence classes (Problem 3.11)
 - (f) the theory of independent equivalence relations with infinitely many classes (first axiomatize it, prove it is q.e.),
 - (g) the theory of vector spaces over a fixed infinite field K,
 - (h) the theory of vector spaces of infinite dimension over a fixed finite field K.
- 4. Investigate stability of theories from Problem 3.
- 5. Prove that if κ is regular and T is κ -stable, then T has a saturated model of power κ (comment: the regularity assumption is not needed, but without it the problem is hard, in fact it is an early result of Shelah)
- 6. * Prove that if $\kappa < 2^{\aleph_0}$ and $p_{\alpha}, \alpha < \kappa$ is a family of complete non-isolated 1-types over \emptyset , then there is a (countable) model of T omitting all of them. (comment: this is a result of Shelah. Hint: Instead of trying to counstruct a model right away, construct a family of 2^{\aleph_0} countable models of T such that no complete non-isolated 1-type over \emptyset is realized in two models of this family. In the construction use Skolem functions, after suitabe Skolemization.)
- 7. Which of the theories from Problem 3 have a prime model? Is it minimal?
- 8. Assume a prime model of T exists and is not minimal. Prove that there is an uncountable atomic model of T. Also, prove the reverse implication.
- 9. * Is the minimal model always prime? (hint: no)