## Model Theory, list 3.

- 1. Assume that  $p(x) \in S(\emptyset), p' \subset p$  and  $p'(x) \vdash p(x)$ . Prove that  $p' \equiv p$ .
- 2. Assume that p(x) is a type over A. Prove that p is isolated over  $A \iff p(\mathcal{M})$  contains a non-empty subset definable over A.
- 3. Assume that  $X \subset \mathcal{M}$  is a definable set (over some parameters) and for every  $f \in Aut(\mathcal{M}/A), \ f[X] = X$ . Prove that X is definable by some formula with parameters from A.
- 4. Assume that p(x), q(x) are types and  $\varphi(x), \psi(x)$  formulas over A. Prove that (a)  $p(x) \vdash q(x) \iff \exists M \ |A|^+$ -saturated,  $p(M) \subset q(M)$ .
  - (b)  $p(x) \vdash q(x) \iff$  for every  $\varphi(x) \in q(x)$  there is a finite  $p_0(x) \subseteq p(x)$  such that  $p_0(x) \vdash \varphi(x)$ .
  - (c)  $\varphi(x) \vdash \psi(x) \iff T(A) \vdash \forall x (\varphi(x) \to \psi(x)).$
- 5. Assume that p(x), q(x) are types over A and  $\mathcal{M} = p(\mathcal{M}) \cup q(\mathcal{M})$  and  $p(\mathcal{M}) \cap q(\mathcal{M}) = \emptyset$ . Prove that the sets  $p(\mathcal{M})$  and  $q(\mathcal{M})$  are definable over A.
- 6. Assume that  $a, b \in \mathcal{M}$ . Prove that

$$tp(a/\emptyset) \vdash tp(a/b) \iff tp(b/\emptyset) \vdash tp(b/a).$$

- 7. Prove that a theory T is  $\forall$ -axiomatizable (that is, axiomatizable by sentences of the form  $\forall \overline{x} \varphi(\overline{x})$ , where  $\varphi$  is open)  $\iff$  every substructure of a model of T is a model of T.(hint: it is proved in the book by Sacks, Saturated model theory, but it is good if you think about it yourself).
- 8. Prove that if T is  $\forall \exists$ -axiomatizable, then the union of any chain of models of T is a model of T.
- 9. Give axioms of the theory of linear spaces over an infinite field K. Prove that it is complete and q.e. Describe definable sets in models of T. (hint: by a vector space over K we mean a structure  $(V, +, 0, r)_r \in K$ , where  $r: V \to V$  are unary functions, scalar multiplications by  $r \in K$ ).
- 10. The same as in the previous problem, for infinite linear spaces over a finite field K.
- 11. Give axioms of the theory  $Th(2^{\omega}, E_n)_{n < \omega}$ , where  $f E_n g \iff f(n) = g(n)$ . Prove that it is q.e.
- 12. The same for  $Th(2^{\omega}, P_n(x))_{n<\omega}$ , where  $P_n(f) \iff f(n) = 0$ .
- 13. We say that a theory T is model complete if  $T \cup D_{at}(M)$  is complete for every  $M \models T$ . Prove that T is model complete  $\iff$  for every formula  $\varphi$  there is an existential formula  $\psi$  (that is, of the form  $\exists \overline{x} \psi'$ , where  $\psi'$  is open, i.e. without quantifiers) such that  $T \vdash \varphi \leftrightarrow \psi$ .

14. Prove that T is model complete  $\iff$  for all  $M,N \models T,\ M \subseteq N$  implies  $M \prec N.$