Model Theory, List 2.

- 1. Give an example of two elementarily equivalent infinite linear orders and a partial isomorphism f between them that is not an elementary mapping.
- 2. Assume that T is a consistent theory (not necessarily complete). Prove that T is complete \iff every two models of T have isomorphic elementary extensions. (hint: In the proof of \Rightarrow construct isomorphic extensions as unions of suitabe elementary chains of models. Look at the proof of existence of a stronly κ -homogeneous model.)
- 3. Assume that $M \subseteq N$ are L-structures.
 - (a) Prove that if $\varphi(\overline{x})$ is an open formula (that is, quantifier free), then for all $\overline{a} \subseteq M$, $(M \models \varphi(\overline{a}) \iff N \models \varphi(\overline{a}))$.
 - (b) Prove that if $\varphi(\overline{x})$ is an \exists -formula (that is, of the form $\exists \overline{y}\psi(\overline{x},\overline{y})$, where ψ is open), then for all $\overline{a} \subseteq M$, $(M \models \varphi(\overline{x}) \Rightarrow N \models \varphi(\overline{x}))$. Give an example, where the reverse implication fails.
- 4. Prove that if $S_n(\emptyset)$ is countable for all $n < \omega$, then T has a countable saturated model. Also prove the reverse implication.
- 5. Prove that a saturated model is strongly homogeneous.
- 6. Assume $N, M \prec \mathcal{M}$ and $f: M \to N$ is an isomorphism. Prove that f elementary (as a mapping between subsets of \mathcal{M}). (hint: There are hidden tacit assumptions here. Namely, M, N are small, see Lecture 3.)
- 7. Prove that every countable M has an elementary countable extension N that is homogeneous. (hint: construct N as the union of an elementary chain of models $M_n, n < \omega$. At step n ensure that a partial finite elemenary mapping $f: M_n \to M_n$ has a suitable extension in M_{n+1} .
- 8. * Let $f, g \in \mathbb{C}[x]$. Prove that if the structures (\mathbb{C}, f) and (\mathbb{C}, g) (for the language with one symbol of a unary function) are elementarily equivalent, then they are isomorphic.
- 9. Give axioms of the thery of successor function $Th(\mathbb{Z}, S)$. Prove it is decidable.(hint: Ehrenfeucht games)