Logic R, list 6 (declarations: Jan 30, 9:00, homework: Jan 31)
Problems and items thereof marked with minus are excluded from homework. "recursive function" by default means "partial recursive function". You can use the fact that a function is recursive iff it is TM-computable.

1. - Let $\Sigma=\{0,1\}$. Find 1-tape Turing machines recognizing language $L \subseteq \Sigma^{*}$:
(a) $L=\{01,0101,010101, \ldots\}$, (b) $L=\left\{0^{n} 1^{n}: n \in N\right\}$ (here $\sigma^{n}=\sigma \sigma \ldots \sigma(n$ times))
2. (a) Prove that if $A, B \subseteq \mathbb{N}$ are recursive, then $N \backslash A, A \cup B, A \cap B$ are recursive, too (that is, recursive sets are an algebra of subsets of \mathbb{N}).
(b) Prove that if $f(x, y)$ is recursive, then $g(x)=\sum_{y \leqslant x} f(x, y)$ is recursive.
(c) Prove that if a (total) function $f: \mathbb{N} \rightarrow \mathbb{N}$ is increasing and $\operatorname{Rng}(f)$ is a recursive set, then f is recursive.
(d) Prove that an infinite set $X \subseteq \mathbb{N}$ is recursive $\Longleftrightarrow X=R n g(f)$ for some total recursive increasing function f.
3. (a) Prove that the range and domain of a recursive function $f: \mathbb{N} \rightarrow \mathbb{N}$ are recursively enumerable.
(b) Prove that if $A \subseteq \mathbb{N}$ is recursively enumerable, then there is a recursive function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that A is its domain.
(c) Assume that $f, g: \mathbb{N} \rightarrow \mathbb{N}, A=f[\mathbb{N}], B=g[\mathbb{N}]$ oraz $A \cap B \neq \emptyset$. Using f, g, basic recursive functions and operartions of composition, recursion and minimum define a function $h: \mathbb{N} \rightarrow \mathbb{N}$ with $\operatorname{Rng}(h)=A \cap B$.
4. (a) Prove that the set $A \subseteq \mathbb{N}$ is recursively enumerable $\Longleftrightarrow A$ is the projection of a recursive set $B \subseteq \mathbb{N} \times \mathbb{N}$.
(b) Prove that the projection of a recursively enumerable set $A \subseteq \mathbb{N} \times \mathbb{N}$ to the first coordinate is recursively enumerable.
(c) Assume that $A \subseteq \mathbb{N}$ is recursively enumerable and infinite. Prove that there is a recursively enumerable set $B \subseteq A$ such that the set $A \backslash B$ is not recursively enumerable.
5. The set $A \subseteq N$ is called spectrum when there is a sentence σ in a language L such that $A=\{\|M\|: M \models \sigma$ i M skonczony $\}$. Prove that if A is spectrum, then A is recursive.(Note an open problem of Fagin, 1970: Assume A is a spectrum. Is the complement of A a spectrum?).
6. Prove that $A \subseteq \mathbb{N}$ is recursively enumerable \Longleftrightarrow there is a Turing machine M such that for the input $x \in \mathbb{N}: M$ stops $\Longleftrightarrow x \in A$.
7. Prove in $P A$ that
(a) $x+y=y+x$; (b) $-x \cdot y=y \cdot x$; (c) $-(x+y)+z=x+(y+z)$ etc.
8. Write in the language $L=\{+, \cdot,<\} \cup\{\underline{n}: n \in N\}$ the following formulas about natural numbers:
(a)- x is a prime number;
(b)- x is a power of 2 ;
(c)- x is a product of two different primes;
(d) x is a power of 10 ;
(e) x is the number of non-isomorphic graphs with y vertices;
(f) x is the number of distinct bases in a y-dimensional vector space over Z_{2}.
9. * Primitive recursive functions Prec arise from the basic ones by application of composition and simple recursion. Prove that there is a total recursive function that is not primitive recursive. (hint: find a total recursive function $f: \mathbb{N} \times \mathbb{N} \rightarrow$ \mathbb{N} universal for Prec, that is such that $\forall n f(n, \cdot) \in \operatorname{Prec}$ and $\forall g: \mathbb{N} \rightarrow \mathbb{N}, g \in$ Prec $\Rightarrow \exists n f(n, \cdot)=g(\cdot))$
