Logic R, list 6 (declarations: Jan 30, 9:00, homework: Jan 31)

Problems and items thereof marked with minus are excluded from homework. "recursive function" by default means "partial recursive function". You can use the fact that a function is recursive iff it is TM-computable.

- 1. Let $\Sigma = \{0, 1\}$. Find 1-tape Turing machines recognizing language $L \subseteq \Sigma^*$: (a) $L = \{01, 0101, 010101, \ldots\}$, (b) $L = \{0^n 1^n : n \in N\}$ (here $\sigma^n = \sigma \sigma \ldots \sigma$ (*n* times))
- 2. (a) Prove that if A, B ⊆ N are recursive, then N\A, A∪B, A∩B are recursive, too (that is, recursive sets are an algebra of subsets of N).
 (b) Prove that if f(m m) is recursive, then g(m) = ∑ f(m m) is recursive.

(b) Prove that if f(x, y) is recursive, then $g(x) = \sum_{y \leq x} f(x, y)$ is recursive.

(c) Prove that if a (total) function $f : \mathbb{N} \to \mathbb{N}$ is increasing and Rng(f) is a recursive set, then f is recursive.

(d) Prove that an infinite set $X \subseteq \mathbb{N}$ is recursive $\iff X = Rng(f)$ for some total recursive increasing function f.

3. (a) Prove that the range and domain of a recursive function $f : \mathbb{N} \to \mathbb{N}$ are recursively enumerable.

(b) Prove that if $A \subseteq \mathbb{N}$ is recursively enumerable, then there is a recursive function $f : \mathbb{N} \to \mathbb{N}$ such that A is its domain.

(c) Assume that $f, g : \mathbb{N} \to \mathbb{N}$, $A = f[\mathbb{N}]$, $B = g[\mathbb{N}]$ oraz $A \cap B \neq \emptyset$. Using f, g, basic recursive functions and operations of composition, recursion and minimum define a function $h : \mathbb{N} \to \mathbb{N}$ with $Rng(h) = A \cap B$.

4. (a) Prove that the set $A \subseteq \mathbb{N}$ is recursively enumerable $\iff A$ is the projection of a recursive set $B \subseteq \mathbb{N} \times \mathbb{N}$.

(b) Prove that the projection of a recursively enumerable set $A \subseteq \mathbb{N} \times \mathbb{N}$ to the first coordinate is recursively enumerable.

(c) Assume that $A \subseteq \mathbb{N}$ is recursively enumerable and infinite. Prove that there is a recursively enumerable set $B \subseteq A$ such that the set $A \setminus B$ is not recursively enumerable.

- 5. The set $A \subseteq N$ is called spectrum when there is a sentence σ in a language L such that $A = \{ \|M\| : M \models \sigma \text{ i } M \text{ skończony} \}$. Prove that if A is spectrum, then A is recursive.(Note an open problem of Fagin, 1970: Assume A is a spectrum. Is the complement of A a spectrum?).
- 6. Prove that $A \subseteq \mathbb{N}$ is recursively enumerable \iff there is a Turing machine M such that for the input $x \in \mathbb{N}$: M stops $\iff x \in A$.
- 7. Prove in *PA* that (a) x + y = y + x; (b)- $x \cdot y = y \cdot x$; (c)- (x + y) + z = x + (y + z) etc.
- 8. Write in the language $L = \{+, \cdot, <\} \cup \{\underline{n} : n \in N\}$ the following formulas about natural numbers:

(a)- x is a prime number;

- (b)- x is a power of 2;
- (c)- x is a product of two different primes;
- (d) x is a power of 10;
- (e) x is the number of non-isomorphic graphs with y vertices;
- (f) x is the number of distinct bases in a y-dimensional vector space over Z_2 .
- 9. * Primitive recursive functions *Prec* arise from the basic ones by application of composition and simple recursion. Prove that there is a total recursive function that is not primitive recursive. (hint: find a total recursive function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ universal for *Prec*, that is such that $\forall n \ f(n, \cdot) \in Prec$ and $\forall g : \mathbb{N} \to \mathbb{N}, \ g \in Prec \Rightarrow \exists n \ f(n, \cdot) = g(\cdot)$)