Logic R, list 3. (homework due Nov 29, declarations due by 13:00 on Nov 29)

1. Let $B A_{0}$ be the theory of atomless Boolean algebras. Prove that $B A_{0}$ is $\aleph_{0}{ }^{-}$ categorical and admits elimination of quantifiers.
2. Prove that if T is complete and admits elimination of quantifiers, then for $M, N \models T, M \subseteq N$ implies $M \prec N$.
3. Check that the Stone space $S(B)$ of Boolean algebra B is compact Hausdorff. Prove that if B is countable, then $S(B)$ is homeomorphic to a closed subset of the Cantor set.
4. Assume that M is a model (structure) for language L and N is a model of the theory $T h(M, n)_{m \in M}$ (in language $L(M)$, with new constant symbols naming all elements of $|M|$ added). Let $M^{\prime}=\left\{m^{N}: m \in M\right\}$. Prove that
(a) M^{\prime} is a model for L (with the structure induced from N).
(b) $M^{\prime} \cong M$ and $M^{\prime} \prec N$.
5. Prove tha every proper filter in a Boolean algebra B extends to an ultrafilter.
6. (a) Prove that every two Boolean algebras of the same size are isomorphic.
(b) Prove that a Boolean algebra B is finite $\Longleftrightarrow S(B)$ is finite.
(c) Prove that the number of elements of a finite Boolean algebra is a power of 2.
7. Prove that in some elementary extension \mathbb{Z}^{\prime} of the group $(\mathbb{Z},+)$ there is an element $a \neq 0$ that is divisible (i.e. for every $n>0, \mathbb{Z}^{\prime} \models \exists x \underbrace{x+\cdots+x}_{n}=a$).
8. (a) Describe all countable models of the theory of (\mathbb{Z}, S), where S is the successor function (up to isomorphism).
(b) A cycle in a k-element set $X=\left\{x_{1}, \ldots, x_{k}\right\}$ is a structure (X, S), where S is a permutation of X such that $S\left(x_{i}\right)=x_{i+1}$ for $i<k$, and $S\left(x_{k}\right)=x_{1}$. Let T be the theory of finite cycles in the language $L=\{S\}$, that is, the set of formulas of L true in all finite cycles (X, S). Prove that T and $T h(\mathbb{Z}, S)$ have the same infinite countable models.
9. Assume that G is a group of permutations of an non-empty finite set X (i.e. $G<S(X)$). Prove that for certain language L, there is an L-structure on the set X such that $G=\operatorname{Aut}(X)$.
