Logic R, List 2 (homework due on Nov. 8, declarationes: by 13:00 on Nov 8).

1. We define the notion of semantical consequence: for a set of formulas T and a formula φ of a given language L:

$$T \models \varphi \iff (\forall M \models T) \ M \models \varphi.$$

Prove that $T \vdash \varphi \Leftrightarrow T \models \varphi$. (This result justifies that the definition of \vdash is correct.)

- 2. Prove that $M \cong N \Rightarrow M \equiv N$.
- 3. Prove that if $M \equiv N$ and L, M are finite, then $M \cong N$. Moreover, there is a sentence σ such that $M \models \sigma$ and $\forall N \models \sigma$, $N \cong M$.
- 4. Assume that L is a finite relational language. Prove that M ≡ N ⇔ ∀n D has a winning strategy in the game Γ_n(M, N). This problem splits into two parts:
 (a) ⇒
 (b) ⇐.
- 5. Prove that if T is complete and has a recursively enumerable set of axioms, then T is decidable.
- 6. Assume the sentence φ is built exclusively from unary relational symbols and logical symbols. Prove that $\exists n < \omega$ (*n* depends only in the length of φ) such that if φ has a model, then, it has a model of size < n.
- 7. Deduce from this that there is an algorithm deciding, if φ is a tautology for φ as in Problem 5.
- 8. Let

 $FLO = \{ \varphi : \forall M \models LO, \ M \text{ finite} \Rightarrow M \models \varphi \},\$

 $FLO_{\infty} = \{ \varphi : \exists n \forall M \models LO, M \text{ finite and } \|M\| > n \Rightarrow M \models \varphi \}.$

(a) Prove that the theories FLO, FLO_{∞} are decidable (hint: use Ehrenfeucht games).

(b) Notice that the theory FLO is not complete , the theory FLO_{∞} is complete and $FLO_{\infty} = Th(?, \leq)$.

9. (a) Prove that there is no sentence φ such that $\forall M$ ($M \models \varphi \iff M$ is finite).

(b) Prove that there is no theory $T \supseteq LO$ with infinite models such that all its infinite models are well ordered.