Logic R, list 1.

1. Which sentences (formulas) are true in the empty structure?
2. Prove that if a formula φ is an instance of a propositional formula α, then $\models \alpha$ implies $\models \varphi$.
3. Prove that if $\models \alpha \rightarrow \beta$ and p_{1}, \ldots, p_{k} are all common propositional variables of the propositional formulas α i β, then there is a propositional formula $\gamma\left(p_{1}, \ldots, p_{k}\right)$ such that $\models \alpha \rightarrow \gamma$ and $\models \gamma \rightarrow \beta$.
4. Prove that if $v, v^{\prime}: S \rightarrow\{0,1\}$ are logical valuations and $\left.v\right|_{Z}=\left.v^{\prime}\right|_{Z}$, then $v=v^{\prime}$ (Z is the set of propositional variables in S).
5. We define logical connectives \perp and \mid by $\alpha \perp \beta=\neg(\alpha \wedge \beta), \alpha \mid \beta=\neg(\alpha \vee \beta)$. Prove that using each of these connectives we can define all the other logical connectives; next show that \perp and \mid are the only connectives with this property (hint: what can the definition of $\neg \mathrm{be}$?).
6-. Fill in randomly the table of logical values of an unknown propositional formula with variables p, q, r. Then write down a formula $\alpha(p, q, r)$ with precisely this table of logical values.
6. Prove that a propositional formula α is equivalent to a formula built from propositional variables and connectives \wedge, \rightarrow if and only if for every valuation w, if $\left.w\right|_{Z} \equiv 1$, then $w(\alpha)=1$ (hint: comsider $\neg \alpha$.).

8-. Verify if the cut rule and generalization rule are valid inference rules and if every axiom of KRL is a tautology.
9. Prove the deduction theorem: If φ is a sentence, then $(X \vdash \varphi \rightarrow \psi \Longleftrightarrow$ $X \cup\{\varphi\} \vdash \psi$). (hint for \Leftarrow : Assume that $\alpha_{1}, \ldots, \alpha_{n}=\psi$ is a proof of ψ from $X \cup\{\varphi\}$. Prove by induction that $X \vdash \varphi \rightarrow \alpha_{i}$ for every i). Show that the assumption that φ is a sentence is essential.
10. Prove that the set of formulas X is inconsistent $\Longleftrightarrow C n(X)=$ Form $_{L}$.
11. Priove the Lindenbaum Theorem: every consistent theory X is contained in some complete consistent theory X^{\prime} (hint: use Zorna Lemma).

12-. Prove that every formula φ is equivalent to a formula φ^{\prime} in a normal prenex form, i.e. $\models \varphi \leftrightarrow \varphi^{\prime}$, where $\varphi^{\prime}=Q_{1} x_{i_{1}} Q_{2} x_{i_{2}} \ldots Q_{k} x_{i_{k}} \psi\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ and $Q_{i} \in$ $\{\forall, \exists\}, \psi$ does not contain quantifiers and the scope of each of the quantifiers in φ^{\prime} is the whole part of φ^{\prime} to the right of it.

Problems marked with - can not be turned in as homework.

