
Proof of Optimality of Huffman Codes

CSC373 Spring 2009

1 Problem

You are given an alphabet A and a frequency function f : A → (0, 1) such that∑
x f(x) = 1. Find a binary tree T with |A| leaves (each leaf corresponding to

a unique symbol) that minimizes

ABL(T) =
∑

leaves of T

f(x)depth(x)

Such a tree is called optimal.

2 Algorithm

HUF(A, f)
If |A| = 1 then return a single vertex.
Let w and y be the symbols with the lowest frequencies.
Let A′ = A \ {w, y}+ {z}.
Let f ′(x) = f(x) for all x ∈ A′ \ {z}, and let f ′(z) = f(w) + f(y).
T ′ = HUF(A′, f ′).
Create T from T ′ by adding w and y as children of z.
return T

3 Proof

Lemma 1 Let T be a tree for some f and A, and let y and w be two leaves. Let
T ′ be the tree obtained from T by swapping y and w. Then ABL(T ′)−ABL(T) =
(f(y)− f(w))(depth(w, T)− depth(y, T)).

Proof

ABL(T ′)−ABL(T) = f(y)depth(w, T) + f(w)depth(y, T)− f(w)depth(w, T)− f(y)depth(y, T)
= f(y)(depth(w, T)− depth(y, T)) + f(w)(depth(y, T)− depth(w, T))
= (f(y)− f(w))(depth(w, T)− depth(y, T))

Lemma 2 There exists an optimal tree such that the two symbols with the lowest
frequencies are siblings.

Proof Let T be an optimal tree. Let w and y be two symbols with the lowest
frequencies. If there is more than one symbol that has the lowest frequency, then

1

take two that have the biggest depth. If w and y are siblings, then we are done.
Otherwise, suppose without loss of generality, that depth(w, T) ≥ depth(y, T).
We have three cases:

• w has a sibling z. Let T ′ be the tree created from T by swapping z and
y, and thus making w and y siblings. By applying Lemma 1, we get that
ABL(T ′) ≤ ABL(T). Since T is optimal, there cannot be another tree
with a smaller cost, and so ABL(T ′) = ABL(T). Thus T ′ is also optimal.

• w is an only child. Create T ′ by removing w’s leaf and assigning w to
its old parent. T ′ is cheaper than T , contradiction the optimality of T .
Hence, this case is not possible.

• There exists a node z at a depth bigger then w. Create T ′ by swapping
w and z. By our choice of w, f(w) < f(z), so, applying Lemma 1, we
have that T ′ is cheaper than T , a contradiction. Hence, this case is not
possible.

Theorem 3 The algorithm HUF(A, f) computes an optimal tree for frequencies
f and alphabet A.

Proof The proof is by induction on the size of the alphabet. The induction
hypothesis is that for all A with |A| = n and for all frequencies f , HUF(A, f)
computes the optimal tree.

In the base case (n = 1), the tree is only one vertex and the cost is zero,
which is the smallest possible.

For the general case, assume that the induction hypothesis holds for n− 1.
That is, T ′ is optimal for A′ and f ′. First, let us show the following:

ABL(T) = (
∑

x∈A\{w,y}

f(x)depth(x, T)) + f(w)depth(w, T) + f(y)depth(y, T)

= (
∑

x∈A\{w,y}

f(x)depth(x, T)) + (f(w) + f(y))(depth(z, T ′) + 1)

= (
∑

x∈A\{w,y}

f(x)depth(x, T)) + f ′(z)depth(z, T ′) + f(w) + f(y)

= (
∑
x∈A′

f ′(x)depth(x, T ′)) + f(w) + f(y)

= ABL(T ′) + f(w) + f(y)

Now, assume for the sake of contradiction that T is not optimal, and let Z be
an optimal tree that has w and y as siblings (this exists by the above lemma).
Let Z ′ be the tree obtained from Z by removing w and y. We can view Z ′ as
a tree for the alphabet A′ and frequency function f ′. We can then repeat the
calculation above and get ABL(Z) = ABL(Z ′) + f(w) + f(y). So, ABL(T ′) =
ABL(T)−f(w)−f(y) > ABL(Z)−f(w)−f(y) = ABL(Z ′). Since T ′ is optimal
for A′ and f ′, this is a contradiction.

2

