module type OrderedType = sig type t val compare : t -> t -> int end module type S = sig type key type t (** permutacja jako funkcja *) val apply : t -> key -> key (** permutacja identycznościowa *) val id : t (** permutacja odwrotna *) val invert : t -> t (** permutacja która tylko zamienia dwa elementy miejscami *) val swap : key -> key -> t (** złożenie permutacji (jako złożenie funkcji) *) val compose : t -> t -> t (** porównywanie permutacji *) val compare : t -> t -> int end module Make(Key : OrderedType) : (S with type key = Key.t) = struct type key = Key.t module MapModule = Map.Make(Key) type t = key MapModule.t * key MapModule.t let apply ((map, invmap) : t) k = try (MapModule.find k map) with | Not_found -> k let id : t = (MapModule.empty, MapModule.empty) let invert ((map, invmap) : t) : t = (invmap, map) let swap k1 k2 : t = let (map, invmap) = id in (MapModule.add k2 k1 (MapModule.add k1 k2 map), MapModule.add k2 k1 (MapModule.add k1 k2 invmap)) let compose ((map1, invmap1) : t) ((map2, invmap2) : t) : t = let f map x m1_of_x m2_of_x = match m1_of_x with | None -> m2_of_x | Some y -> match MapModule.find_opt y map with | None -> Some y | Some z -> Some z in (MapModule.merge (f map2) map1 map2, MapModule.merge (f invmap1) invmap2 invmap1) let compare ((map1, invmap1) : t) ((map2, invmap2): t) = MapModule.compare Key.compare map1 map2 end module StringOrder: (OrderedType with type t = string) = struct type t = string let compare s1 s2 = if s1 < s2 then -1 else if s1 > s2 then 1 else 0 end module StringPerm = Make(StringOrder) let p = StringPerm.compose (StringPerm.swap "1" "2") (StringPerm.swap "2" "3");; (* Zadanie 2 *) let is_generated (type a) (packed : (module S with type t = a)) (perm : a) (generators : (a list)) = let module PermModule = (val packed : (S with type t = a)) in let module OrderedPerm : (OrderedType with type t = a) = struct type t = a let compare p1 p2 = PermModule.compare p1 p2 end in let module SS = Set.Make(OrderedPerm) in let rec flatmap f = function | [] -> [] | x :: xs -> (f x) @ flatmap f xs in let saturate xn = let perms = SS.elements xn in let inverts = List.map (fun p -> PermModule.invert p) perms in let compositions = flatmap (fun p -> (List.map (fun q -> PermModule.compose p q) perms)) perms in SS.union xn (SS.union (SS.of_list inverts) (SS.of_list compositions)) in let rec iter xn = let xn1 = saturate xn in if SS.mem perm xn1 then true else if SS.compare xn xn1 == 0 then false else iter xn1 in iter (SS.of_list generators) (* Zadanie 3 *) module OrderedList (X : OrderedType) : (OrderedType with type t = X.t list) = struct type t = X.t list let rec compare (xs: t) (ys: t) = match (xs, ys) with | ([], []) -> 0 | ([], _) -> -1 | (_, []) -> 1 | (x :: xs, y :: ys) -> let cmp = X.compare x y in if cmp == 0 then compare xs ys else cmp end module OrderedPair (X : OrderedType) : (OrderedType with type t = X.t * X.t) = struct type t = X.t * X.t let compare ((a, b): t) ((c, d) : t) = let cmp = X.compare a c in if cmp == 0 then X.compare b d else cmp end module OrderedOption (X : OrderedType) : (OrderedType with type t = X.t option) = struct type t = X.t option let compare (a: t) (b: t) = match (a, b) with | (None, None) -> 0 | (None, _) -> -1 | (_, None) -> 1 | (Some a, Some b) -> X.compare a b end