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Foreword

Foreword from the First Edition

When [ first got a summer job at MIT’s Project MAC almost 30 years ago, | was delighted to be able
to work with the DEC PDP-10 computer, which was more fun to program in assembly language than
any other computer, bar none, because of its rich yet tractable set of instructions for performing bit
tests, bit masking, field manipulation, and operations on integers. Though the PDP-10 has not been
manufactured for quite some years, there remains a thriving cult of enthusiasts who keep old PDP-10
hardware running and who run old PDP-10 software—entire operating systems and their applications
—by using personal computers to simulate the PDP-10 instruction set. They even write new software;
there is now at least one Web site with pages that are served up by a simulated PDP-10. (Come on,
stop laughing—it’s no sillier than keeping antique cars running.)

I also enjoyed, in that summer of 1972, reading a brand-new MIT research memo called

HAKMEM, a bizarre and eclectic potpourri of technical trivia.l The subject matter ranged from
electrical circuits to number theory, but what intrigued me most was its small catalog of ingenious
little programming tricks. Each such gem would typically describe some plausible yet unusual
operation on integers or bit strings (such as counting the 1-bits in a word) that could easily be
programmed using either a longish fixed sequence of machine instructions or a loop, and then show
how the same thing might be done much more cleverly, using just four or three or two carefully
chosen instructions whose interactions are not at all obvious until explained or fathomed. For me,
devouring these little programming nuggets was like eating peanuts, or rather bonbons—I just
couldn’t stop—and there was a certain richness to them, a certain intellectual depth, elegance, even
poetry.

“Surely,” I thought, “there must be more of these,” and indeed over the years I collected, and in
some cases discovered, a few more. “There ought to be a book of them.”

I was genuinely thrilled when I saw Hank Warren’s manuscript. He has systematically collected
these little programming tricks, organized them thematically, and explained them clearly. While some
of them may be described in terms of machine instructions, this is not a book only for assembly
language programmers. The subject matter is basic structural relationships among integers and bit
strings in a computer and efficient techniques for performing useful operations on them. These
techniques are just as useful in the C or Java programming languages as they are inassembly

language.

Many books on algorithms and data structures teach complicated techniques for sorting and
searching, for maintaining hash tables and binary trees, for dealing with records and pointers. They
overlook what can be done with very tiny pieces of data—bits and arrays of bits. It is amazing what
can be done with just binary addition and subtraction and maybe some bitwise operations; the fact
that the carry chain allows a single bit to affect all the bits to its left makes addition a peculiarly
powerful data manipulation operation in ways that are not widely appreciated.

Yes, there ought to be a book about these techniques. Now it is in your hands, and it’s terrific. If
you write optimizing compilers or high-performance code, you must read this book. You otherwise
might not use this bag of tricks every single day—but if you find yourself stuck in some situation
where you apparently need to loop over the bits in a word, or to perform some operation on integers
and 1t just seems harder to code than it ought, or you really need the inner loop of some integer or bit-



fiddly computation to run twice as fast, then this is the place to look. Or maybe you’ll just find
yourself reading it straight through out of sheer pleasure.

Guy L. Steele, Jr.
Burlington, Massachusetts
April 2002



Preface

Caveat Emptor. The cost of software
maintenance increases with the square of
the programmer’s creativity.

First Law of Programmer Creativity,
Robert D. Bliss, 1992

This 1s a collection of small programming tricks that [ have come across over many years. Most of
them will work only on computers that represent integers in two’s-complement form. Although a 32-
bit machine is assumed when the register length is relevant, most of the tricks are easily adapted to
machines with other register sizes.

This book does not deal with large tricks such as sophisticated sorting and compiler optimization
techniques. Rather, it deals with small tricks that usually involve individual computer words or
instructions, such as counting the number of 1-bits in a word. Such tricks often use a mixture of
arithmetic and logical instructions.

It is assumed throughout that integer overflow interrupts have been masked off, so they cannot
occur. C, Fortran, and even Java programs run in this environment, but Pascal and Ada users beware!

The presentation is informal. Proofs are given only when the algorithm is not obvious, and
sometimes not even then. The methods use computer arithmetic, “floor” functions, mixtures of
arithmetic and logical operations, and so on. Proofs in this domain are often difficult and awkward to
express.

To reduce typographical errors and oversights, many of the algorithms have been executed. This is
why they are given in a real programming language, even though, like every computer language, it has
some ugly features. C is used for the high-level language because it is widely known, it allows the
straightforward mixture of integer and bit-string operations, and C compilers that produce high-
quality object code are available.

Occasionally, machine language is used, employing a three-address format, mainly for ease of
readability. The assembly language used is that of a fictitious machine that is representative of
today’s RISC computers.

Branch-free code is favored, because on many computers, branches slow down instruction fetching
and inhibit executing instructions in parallel. Another problem with branches is that they can inhibit
compiler optimizations such as instruction scheduling, commoning, and register allocation. That is,
the compiler may be more effective at these optimizations with a program that consists of a few large
basic blocks rather than many small ones.

The code sequences also tend to favor small immediate values, comparisons to zero (rather than to
some other number), and instruction-level parallelism. Although much of the code would become
more concise by using table lookups (from memory), this is not often mentioned. This is because
loads are becoming more expensive relative to arithmetic instructions, and the table lookup methods
are often not very interesting (although they are often practical). But there are exceptional cases.

Finally, I should mention that the term “hacker” in the title is meant in the original sense of an
aficionado of computers—someone who enjoys making computers do new things, or do old things in
a new and clever way. The hacker is usually quite good at his craft, but may very well not be a



professional computer programmer or designer. The hacker’s work may be useful or may be just a
game. As an example of the latter, more than one determined hacker has written a program which,

when executed, writes outan exact copy of itself! This is the sense in which we use the term
“hacker.” If you’re looking for tips on how to break into someone else’s computer, you won’t find
them here.

Acknowledgments

First, [ want to thank Bruce Shriver and Dennis Allison for encouraging me to publish this book. I am
indebted to many colleagues at IBM, several of whom are cited in the Bibliography. One deserves
special mention: Martin E. Hopkins, whom I think of as “Mr. Compiler” at IBM, has been relentless
in his drive to make every cycle count, and I’m sure some of his spirit has rubbed off on me. Addison-
Wesley’s reviewers have improved the book immensely. Most of their names are unknown to me, but
the review by one whose name I did learn was truly outstanding: Guy L. Steele, Jr., completed a 50-
page review that included new subject areas to address, such as bit shuffling and unshuffling, the
sheep and goats operation, and many others. He suggested algorithms that beat the ones I used. He
was extremely thorough. For example, I had erroneously written that the hexadecimal number
AAAAAAAA factors as 2 - 3 - 17 - 257 - 65537; Guy pointed out that the 3 should be a 5. He
suggested improvements to style and did not shirk from mentioning minutiae. Wherever you see
“parallel prefix” in this book, the material is due to Guy.

H. S. Warren, Jr.
Yorktown, New York
June 2012

lJ 1

See www.HackersDelight.org for additional material related to this book.
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Chapter 1. Introduction

1-1 Notation

This book distinguishes between mathematical expressions of ordinary arithmetic and those that
describe the operation of a computer. In “computer arithmetic,” operands are bit strings, or bit
vectors, of some definite fixed length. Expressions in computer arithmetic are similar to those of
ordinary arithmetic, but the variables denote the contents of computer registers. The value of a
computer arithmetic expression is simply a string of bits with no particular interpretation. An
operator, however, interprets its operands in some particular way. For example, a comparison
operator might interpret its operands as signed binary integers or as unsigned binary integers; our
computer arithmetic notation uses distinct symbols to make the type of comparison clear.

The main difference between computer arithmetic and ordinary arithmetic is that in computer

arithmetic, the results of addition, subtraction, and multiplication are reduced modulo 2", where n is
the word size of the machine. Another difference is that computer arithmetic includes a large number
of operations. In addition to the four basic arithmetic operations, computer arithmetic includes logical
and, exclusive or, compare, shift left, and so on.

Unless specified otherwise, the word size is 32 bits, and signed integers are represented in two’s-
complement form.

Expressions of computer arithmetic are written similarly to those of ordinary arithmetic, except that
the variables that denote the contents of computer registers are in bold face type. This convention is
commonly used in vector algebra. We regard a computer word as a vector of single bits. Constants
also appear in bold-face type when they denote the contents of a computer register. (This has no
analogy with vector algebra because in vector algebra the only way to write a constant is to display
the vector’s components.) When a constant denotes part of an instruction, such as the immediate field
of a shift instruction, light-face type is used.

If an operator such as “+” has bold face operands, then that operator denotes the computer’s
addition operation (“vector addition”). If the operands are light-faced, then the operator denotes the
ordinary scalar arithmetic operation. We use a light-faced variable x to denote the arithmetic value of
a bold-faced variable x under an interpretation (signed or unsigned) that should be clear from the

context. Thus, if x = 0x80000000 and y = 0x80000000, then, under signed integer interpretation, x =y
=23 x +y=-232 andx +y =0. Here, 0x80000000 is hexadecimal notation for a bit string
consisting of a 1-bit followed by 31 0-bits.

Bits are numbered from the right, with the rightmost (least significant) bit being bit 0. The terms

“bits,” “nibbles,” “bytes,” “halfwords,” “words,” and “doublewords” refer to lengths of 1, 4, 8, 16,
32, and 64 bits, respectively.

Short and simple sections of code are written in computer algebra, using its assignment operator
(left arrow) and occasionally an if statement. In this role, computer algebra is serving as little more
than a machine-independent way of writing assembly language code.

Programs too long or complex for computer algebra are written in the C programming language, as
defined by the ISO 1999 standard.

A complete description of C would be out of place in this book, but Table 1-1 contains a brief



summary of most of the elements of C [H&S] that are used herein. This is provided for the benefit of
the reader who i1s familiar with some procedural programming language, but not with C. Table 1-1
also shows the operators of our computer-algebraic arithmetic language. Operators are listed from
highest precedence (tightest binding) to lowest. In the Precedence column, L means left-associative;
that 1s,

a*bec=(a*b)ec

and R means right-associative. Our computer-algebraic notation follows C in precedence and
associativity.

TABLE 1-1. EXPRESSIONS OF C AND COMPUTER ALGEBR

Prece- Computer
dence C Algebra Description
0. 0x...,0b... Hexadecimal, binary constants

16 alk] Selecting the kth component

16 Xgs Xy oee Ditferent variables, or bit selection
(clarified in text)

16 f{x;..9) Ax, ...) Function evaluation

16 abs(.x) Absolute value (but
abs(-231) = -231)

16 nabs(x) Negative of the absolute value

15 x++, X-- Postincrement, decrement

14 ++x, --x Preincrement, decrement

14 (Vpe name ) x Type conversion

14 R x* x to the kth power

14 =X =ik, X Bitwise not (one’s-complement)

14 Ix Logical not (if x = 0 then 1
else 0)




14 -X =3 Arithmetic negation

13L x*y X#y Multiplication, modulo word size

134 x/y x+y Signed integer division

13L x/y xty Unsigned integer division

13:L X3y rem(x, y) Remainder (may be negative), of
(x +y). signed arguments

13L X3y remulx, y) Remainder of x £y, unsigned
arguments

mod(x, y) x reduced modulo y to the interval

[0, abs(y) — 1] ; signed arguments

12L X+ Y, X =Y XTY, X~} Addition, subtraction

11L X <<y, x>y | x=ypxsy Shift left, right with 0-fill (“logi-
cal™ shifts)

11L X »> ¥ Xy Shift right with sign-fill (“arithme-
tic” or “algebraic™ shift)

11L x i o - i ¥ Rotate shifi lefi, right

10 L X <y, X <= vy, XSSP XEN, Signed comparison

X>Y¥Y, X >=9% xX>p,x2y
10 L X<y, x<=¥, | xZpxiy, Unsigned comparison
B> ¥y Xio=ry iy x3y

9L Xx ==y, x !l=y | x=y,x#)y | Equality, inequality

8L X &Y x&y Bitwise and

51 8 X " ¥ x@®y Bitwise exclusive or

7L xX=y Bitwise equivalence (—(x @ y))

6L x | vy x|y Bitwise or

SL X && ¥ X 3’;,}’ Conditional and (if x = 0 then 0
elseif y = 0 then 0 else 1)

4L x ||y X Ty Conditional or (if x# 0 then 1
else if y =0 then 1 else 0)

3L x|y Concatenation

2R X =y X<y Assignment

In addition to the notations described in Table 1-1, those of Boolean algebra and of standard
mathematics are used, with explanations where necessary.

2% ¢

Our computer algebra uses other functions in addition to “abs,” “rem,” and so on. These are



defined where introduced.

In C, the expression = < y < - means to evaluate x < y to a 0/1-valued result, and then compare that
result to -. In computer algebra, the expression x <y <z means (x <y) & (y <z).

C has three loop control statements: wniie, do, and sor. The wni1e Statement is written:
while (€xpression) statement

First, expression is evaluated. If true (nonzero), statement is executed and control returns to evaluate
expression again. If expression is false (0), the while-loop terminates.

The 4o statement 1s similar, except the test is at the bottom of the loop. It is written:
do Statement wniie (expression)

First, statement is executed, and then expression is evaluated. If true, the process is repeated, and if
false, the loop terminates.

The sor statement 1s written:

ror (€1; ey; e3) statement

First, e, usually an assignment statement, is executed. Then e,, usually a comparison, is evaluated. It
false, the for-loop terminates. If true, statement 1s executed. Finally, e;, usually an assignment
statement, 1s executed, and control returns to evaluate e, again. Thus, the familiar “do 1 =1 to n” 1s
written:

Click here to view code image

for (1 = 1; i <= n; 1i++)

(This 1s one of the few contexts in which we use the postincrement operator.)

The ISO C standard does not specify whether right shifts (“>>” operator) of signed quantities are 0-
propagating or sign-propagating. In the C code herein, it is assumed that if the left operand is signed,
then a sign-propagating shift results (and if it is unsigned, then a 0-propagating shift results, following
ISO). Most modern C compilers work this way.

It is assumed here that left shifts are “logical.” (Some machines, mostly older ones, provide an
“arithmetic” left shift, in which the sign bit is retained.)

Another potential problem with shifts is that the ISO C standard specifies that if the shift amount is
negative or is greater than or equal to the width of the left operand, the result is undefined. But, nearly
all 32-bit machines treat shift amounts modulo 32 or 64. The code herein relies on one of these
behaviors; an explanation is given when the distinction is important.

1-2 Instruction Set and Execution Time Model

To permit a rough comparison of algorithms, we imagine them being coded for a machine with an
instruction set similar to that of today’s general purpose RISC computers, such as the IBM RS/6000,
the Oracle SPARC, and the ARM architecture. The machine is three-address and has a fairly large
number of general purpose registers—that is, 16 or more. Unless otherwise specified, the registers
are 32 bits long. General register 0 contains a permanent 0, and the others can be used uniformly for
any purpose.



In the interest of simplicity there are no “special purpose” registers, such as a condition register or
a register to hold status bits, such as “overflow.” The machine has no floating-point instructions.
Floating-point is only a minor topic in this book, being mostly confined to Chapter 17.

We recognize two varieties of RISC: a “basic RISC,” having the instructions shown in Table 1-2,
and a “full RISC,” having all the instructions of the basic RISC, plus those shown in Table 1-3.

TABLE 1-2. BaSsIiC Risc INSTRUCTION SET

Opcode Mnemonic Operands Description

add, sub, mul, RT,RA,RB RT <« RA op RB, where op is add, sub-

div, divu, rem, tract, multiply, divide signed, divide

remu unsigned, remainder signed, or remain-
der unsigned.

addi, muli RT,RA,I RT « RA op I.where op is add or
multiply, and I is a 16-bit signed immedi-
ate value.

addis RT,RA, I RT« RA + (I || 0x0000).

and, or, xor RT,RA,RB RT «— RA op RB. where op 1s bitwise
and, or, or exclusive or.

andi, ori, xori RT,RA,Iu As above, except the last operand is a
| 6-bit unsigned immediate value.

beq, bne, blt, RT,target | Branch to target if RT =0, or if RT = 0,

ble, bgt, bge or ifRT <0, or if RT <}, or if RT = ), or
if RT = 0 (signed integer interpretation
of RT).

bt, bf RT,target | Branch true/false; same as bne/beq resp.

cmpeq, cmpne, RT,RA,RB RT gets the result of comparing RA with

cmplt, cmple, RB; 0 if false and 1 1f true. Mnemonics

cmpgt, cmpge, denote compare for equality, inequality,

cmpltu, cmpleu, less than, and so on, as for the branch

cmpgtu, cmpgeu instructions; and in addition, the suffix
“u” denotes an unsigned comparison.

cmpieq, cmpine, RT,RA,I Like the cmpeq group, except the sec-

cmpilt, cmpile, ond comparand is a 16-bit signed imme-

cmpigt, cmpige diate value.




cmpiequ, cmpineu,
cmpiltu, cmpileu,
cmpigtu, cmpigeu

ldbu, 1dh, 1dhu,
ldw

mulhs, mulhu

not

shl, shr, shrs

shli, shri, shrsi

sth, sth, stw

RT,RA, Iu

RT,d(RA)

RT,RA,RB

RT, RA
RT,RA,RB

RT,RA,Iu

RS,d(RA)

Like the cmpltu group, except the sec-
ond comparand is a 16-bit unsigned
immediate value.

Load an unsigned byte, signed halfword,
unsigned halfword, or word into RT from
memory at location RA + d, where d is
a 16-bit signed immediate value.

RT gets the high-order 32 bits of the prod-
uct of RA and RB: signed and unsigned.

RT <« bitwise one’s-complement of RA.

RT « RA shifted left or right by the
amount given in the rightmost six bits of
RB; 0-fill except for shrs, which 1s
sign-fill. (The shift amount is treated
modulo 64.)

RT « RA shifted left or right by the
amount given in the 5-bit immediate field.

Store a byte, halfword. or word, from RS
into memory at location RA + d, where
d is a 16-bit signed immediate value.

TABLE 1-3. ADDITIONAL INSTRUCTIONS FOR THE “FuLL Risc”




Opcode Mnemonic Operands Description

abs, nabs RT,RA RT gets the absolute value, or the nega-
tive of the absolute value, of RA.

andc, eqv, nand, RT,RA,RB Bitwise and with complement (of RB),

nor, orc equivalence, negative and, negative or,
and or with complement.

extr RT,RA,I,L | Extractbits I through I+L-1 of RA,
and place them right-adjusted in RT, with
0-fill.

extrs RT,RA,I,L | Like extr, but sign-fill.

ins RT,RA,I,L | Insertbits 0 through L-1 of RA into bits
I through I+L-1 of RT.

nlz RT,RA RT gets the number of leading s in RA
(0 to 32).

pop RT,RA RT gets the number of 1-bits in RA (0 to
3

1db RT,d(RA) Load a signed byte into RT from memory
at location RA + d, where d 1s a 16-hit
signed immediate value.

moveq, movne, RT,RA,RB RT « RBif RA =0, orifRA # 0, and so

movlt, movle, on, else RT 15 unchanged.

movgt, movge

shlr, shrr RT,RA,RB RT <« RA rotate-shifted left or right by
the amount given in the rightmost five
bits of RB.

ghilti; .shrril RT,RA,Iu RT <« RA rotate-shifted left or right by
the amount given in the 5-bit immediate
field.

trpeq, trpne, RA,RB Trap (interrupt) if RA = RB, or RA # RB,

trplt, trple, and so on.

trpgt, trpge,

trpltu, trpleu,

trpgtu, trpgeu

trpieq, trpine, RA,I Like the trpeq group, except the sec-

trpilt; trpile; ond comparand is a 16-bit signed imme-

trpigt, trpige diate value.

trpiequ, trpineu, RA,Iu Like the trpltu group. except the sec-

trpiltu, trpileu, ond comparand is a 16-bit unsigned

trpigtu, trpigeu immediate value.

In Tables 1-2, 1-3, and 1-4, RA and RB appearing as source operands really means the contents
of those registers.

A real machine would have branch and link (for subroutine calls), branch to the address contained



in a register (for subroutine returns and “switches™), and possibly some instructions for dealing with
special purpose registers. It would, of course, have a number of privileged instructions and
instructions for calling on supervisor services. It might also have floating-point instructions.

Some other computational instructions that a RISC computer might have are identified in Table 1—
3. These are discussed in later chapters.

It is convenient to provide the machine’s assembler with a few “extended mnemonics.” These are
like macros whose expansion is usually a single instruction. Some possibilities are shown in Table
1-4.

TABLE 1—4. EXTENDED MNEMONICS

Extended
Mnemonic Expansion Description

b target beq RO,target | Unconditional branch.

15 RT, I See text Load immediate, -231 < T< 232
mov RT,RA oril RT,RA,Q Muaove register RA 10 RT.
neg RT,RA sub RT,R0,RA Negate (two’s-complement).

subi RT,RA,I addi RT,RA,-TI Subtract immediate (I +-213).

The load immediate instruction expands into one or two instructions, as required by the immediate

value /. For example, if 0 <7 <219, an or immediate (o-1) from RO can be used. If - 21> <7 < 0, an
add immediate (aaai) from RO can be used. If the rightmost 16 bits of I are 0, add immediate shifted
(agais) can be used. Otherwise, two instructions are required, such as aaais followed by ori.
(Alternatively, in the last case, a load from memory could be used, but for execution time and space
estimates we assume that two elementary arithmetic instructions are used.)

Of course, which instructions belong in the basic RISC and which belong in the full RISC is very
much a matter of judgment. Quite possibly, divide unsigned and the remainder instructions should be
moved to the full RISC category. Conversely, possibly load byte signed should be in the basic RISC
category. It is in the full RISC set because it is probably of rather low frequency of use, and because
in some technologies it is difficult to propagate a sign bit through so many positions and still make
cycle time.

The distinction between basic and full RISC involves many other such questionable judgments, but
we won’t dwell on them.

The instructions are limited to two source registers and one target, which simplifies the computer
(e.g., the register file requires no more than two read ports and one write port). It also simplifies an
optimizing compiler, because the compiler does not need to deal with instructions that have multiple
targets. The price paid for this is that a program that wants both the quotient and remainder of two
numbers (not uncommon) must execute two instructions (divide and remainder). The usual machine
division algorithm produces the remainder as a by-product, so many machines make them both
available as a result of one execution of divide. Similar remarks apply to obtaining the doubleword
product of two words.

The conditional move instructions (e.g., moveq) 0Ostensibly have only two source operands, but in a
sense they have three. Because the result of the instruction depends on the values in RT, RA, and RB,



a machine that executes instructions out of order must treat RT in these instructions as both a use and
a set. That is, an instruction that sets RT, followed by a conditional move that sets RT, must be
executed in that order, and the result of the first instruction cannot be discarded. Thus, the designer of
such a machine may elect to omit the conditional move instructions to avoid having to consider an
instruction with (logically) three source operands. On the other hand, the conditional move
instructions do save branches.

Instruction formats are not relevant to the purposes of this book, but the full RISC instruction set
described above, with floating-point and a few supervisory instructions added, can be implemented
with 32-bit instructions on a machine with 32 general purpose registers (5-bit register fields). By
reducing the immediate fields ofcompare, load, store, and trap instructions to 14 bits, the same
holds for a machine with 64 general purpose registers (6-bit register fields).

Execution Time

We assume that all instructions execute in one cycle, except for the multiply, divide, and remainder
instructions, for which we do not assume any particular execution time. Branches take one cycle
whether they branch or fall through.

The load immediate instruction is counted as one or two cycles, depending on whether one or two
elementary arithmetic instructions are required to generate the constant in a register.

Although /oad and store instructions are not often used in this book, we assume they take one cycle
and ignore any load delay (time lapse between when a load instruction completes in the arithmetic
unit and when the requested data is available for a subsequent instruction).

However, knowing the number of cycles used by all the arithmetic and logical instructions is often
insufficient for estimating the execution time of a program. Execution can be slowed substantially by
load delays and by delays in fetching instructions. These delays, although very important and
increasing in importance, are not discussed in this book. Another factor, one that improves execution
time, 1s what is called “instruction-level parallelism,” which is found in many contemporary RISC
chips, particularly those for “high-end” machines.

These machines have multiple execution units and sufficient instruction-dispatching capability to
execute instructions in parallel when they are independent (that is, when neither uses a result of the
other, and they don’t both set the same register or status bit). Because this capability is now quite
common, the presence of independent operations is often pointed out in this book. Thus, we might say
that such and sucha formula can be coded in such a way that it requires eight instructions and
executes in five cycles on a machine with unlimited instruction-level parallelism. This means that if
the instructions are arranged in the proper order (“scheduled”), a machine with a sufficient number of
adders, shifters, logical units, and registers can, in principle, execute the code in five cycles.

We do not make too much of this, because machines differ greatly in their instruction-level
parallelism capabilities. For example, an IBM RS/6000 processor from ca. 1992 has a three-input
adder and can execute two consecutive add-type instructions in parallel even when one feeds the
other (e.g., anadd feeding a compare, or the base register of aload). As a contrary example,
consider a simple computer, possibly for low-cost embedded applications, that has only one read
port on its register file. Normally, this machine would take an extra cycle to do a second read of the
register file for an instruction that has two register input operands. However, suppose it has a bypass
so that if an instruction feeds an operand of the immediately following instruction, then that operand is
available without reading the register file. On such a machine, it is actually advantageous if each



instruction feeds the next—that is, if the code has no parallelism.

Exercises

1. Express the loop

for (€71; €y; €3) Statement

in terms of a wni1e lOOp.
Can it be expressed as a 4o loop?

2. Code a loop in C in which the unsigned integer control variable : takes on all values from O to
and including the maximum unsigned number, OXFFFFFFFF (on a 32-bit machine).

3. For the more experienced reader: The instructions of the basic and full RISCs defined in this
book can be executed with at most two register reads and one write. What are some common or
plausible RISC instructions that either need more source operands or need to do more than one
register write?



Chapter 2. Basics

2—1 Manipulating Rightmost Bits

Some of the formulas in this section find application in later chapters.

Use the following formula to turn off the rightmost 1-bit in a word, producing 0 ifnone (e.g.,
01011000 = 01010000):

x&(x—-1)

This can be used to determine if an unsigned integer is a power of 2 or is 0: apply the formula
followed by a 0-test on the result.

Use the following formula to turn on the rightmost 0-bit in a word, producing all 1’s if none (e.g.,
10100111 = 10101111):

x[(x+1)

Use the following formula to turn off the trailing 1’s in a word, producing x if none (e.g., 10100111
= 10100000):

x&((x+1)

This can be used to determine if an unsigned integer is of the form 2”— 1, 0, or all 1’s: apply the
formula followed by a O-test on the result.

Use the following formula to turn on the trailing 0’s in a word, producing x if none (e.g., 10101000
= 10101111):

x|(x—1)

Use the following formula to create a word with a single 1-bit at the position of the rightmost 0-bit
inx, producing 0 if none (e.g., 10100111 = 00001000):

~x&((x+1)

Use the following formula to create a word with a single 0-bit at the position of the rightmost 1-bit
in x, producing all 1’s if none (e.g., 10101000 = 11110111):

x| (x—1)
Use one of the following formulas to create a word with 1’s at the positions of the trailing 0’s in x,
and 0’s elsewhere, producing 0 if none (e.g., 01011000 = 00000111):
—x&(x-1)., or
—-(x | —x), or
(x & -x)-1

The first formula has some instruction-level parallelism.
Use the following formula to create a word with 0’s at the positions of the trailing 1’s inx, and 0’s



elsewhere, producing all 1’s ifnone (e.g., 10100111 = 11111000):
x| (x+1)

Use the following formula to isolate the rightmost 1-bit, producing O if none (e.g., 01011000 =
00001000):

x & (—x)

Use the following formula to create a word with 1’s at the positions of the rightmost 1-bit and the
trailing 0’s in x, producing all 1’s if no 1-bit, and the integer 1 if no trailing 0’s (e.g., 01011000 =
00001111):

xe(x—1)

Use the following formula to create a word with 1’s at the positions of the rightmost 0-bit and the
trailing 1’s in x, producing all 1’s if no 0-bit, and the integer 1 if no trailing 1’s (e.g., 01010111 =
00001111):

xo(x+1)

Use either of the following formulas to turn off the rightmost contiguous string of 1’s (e.g.,
01011100 ==> 01000000) [Wood]:

((x](x—1)+1)&x),or
((x & —x) + x)&x

These can be used to determine if a nonnegative integer is of the form 2/ — 2% for some j > k> 0: apply
the formula followed by a 0-test on the result.

De Morgan’s Laws Extended

The logical identities known as De Morgan’s laws can be thought of as distributing, or “multiplying
in,” the not sign. This idea can be extended to apply to the expressions of this section, and a few
more, as shown here. (The first two are De Morgan’s laws.)

—(x&y) = —x | -y

~(x | ) = ~x &y
—(x+1) = —x-1

—{x-1) = —x+1

—% = x-1

-(x®y) = xBy =x=y
—(x=y) = x=sy=xDy
—(x+y) = x—p

~(x-y) = —~x+y

As an example of the application of these formulas, ~(x | (x +1)) = x & —(x +1)=x & ((x +
1)-1)=x&x=0.



Right-to-Left Computability Test

There 1s a simple test to determine whether or not a given function can be implemented with a
sequence of add’s, subtract’s, and’s, or’s, and not’s [War]. We can, of course, expand the list with
other instructions that can be composed from the basic list, such as shift /eft by a fixed amount (which
is equivalent to a sequence of add’s), or multiply. However, we exclude instructions that cannot be
composed from the list. The test is contained in the following theorem.

THEOREM. A4 function mapping words to words can be implemented with word-parallel add,
subtract, and, or, and not instructions if and only if each bit of the result depends only on bits
at and to the right of each input operand.

That is, imagine trying to compute the rightmost bit of the result by looking only at the rightmost bit
of each input operand. Then, try to compute the next bit to the left by looking only at the rightmost two
bits of each input operand, and continue in this way. If you are successful in this, then the function can
be computed with a sequence of add’s, and’s, and so on. If the function cannot be computed in this
right-to-left manner, then it cannot be implemented with a sequence of such instructions.

The interesting part of this i1s the latter statement, and it is simply the contra-positive of the
observation that the functions add, subtract, and, or, and not can all be computed in the right-to-left
manner, so any combination of them must have this property.

To see the “if” part of the theorem, we need a construction that is a little awkward to explain. We
illustrate it with a specific example. Suppose that a function of two variables x and y has the right-to-
left computability property, and suppose that bit 2 of the result  is given by

Fy = Xy | (xg & yy). (1)
We number bits from right to left, 0 to 31. Because bit 2 of the result is a function of bits at and to the
right of bit 2 of the input operands, bit 2 of the result is “right-to-left computable.”

Arrange the computer words x, x shifted left two, and y shifted left one, as shown below. Also, add
a mask that isolates bit 2.

A3l Hdo sxe oty %7 2 A
Xog Xog ... X1 X5 0 0

Vg Vag - Va1 Vo O
0 0 ...0100
g B gl re) A

Now, form the word-parallel and of lines 2 and 3, or the result with row 1 (following Equation (1)),
and and the result with the mask (row 4 above). The result is a word of all 0’s except for the desired
result bit in position 2. Perform similar computations for the other bits of the result, or the 32
resulting words together, and the result is the desired function.

This construction does not yield an efficient program; rather, it merely shows that it can be done
with instructions in the basic list.

Using the theorem, we immediately see that there is no sequence of such instructions that turns off
the leftmost 1-bit in a word, because to see if a certain 1-bit should be turned off, we must look to the
left to see if it is the leftmost one. Similarly, there can be no such sequence for performing a right
shift, or a rotate shift, or a left shift by a variable amount, or for counting the number of trailing 0’s in



a word (to count trailing 0’s, the rightmost bit of the result will be 1 if there are an odd number of
trailing 0’s, and we must look to the left of the rightmost position to determine that).

A Novel Application

An application of the sort of bit twiddling discussed above is the problem of finding the next higher
number after a given number that has the same number of 1-bits. You might very well wonder why
anyone would want to compute that. It has application where bit strings are used to represent subsets.
The possible members of a set are listed in a linear array, and a subset is represented by a word or
sequence of words in which biti is on if member i is in the subset. Set unions are computed by the
logical or of the bit strings, intersections by and’s, and so on.

You might want to iterate through all the subsets of a given size. This is easily done if you have a

function that maps a given subset to the next higher number (interpretingthe subset string as an
integer) with the same number of 1-bits.

A concise algorithm for this operation was devised by R. W. Gosper [HAK, item 175].1 Given a
word x that represents a subset, the idea is to find the rightmost contiguous group of 1’s in x and the
following 0’s, and “increment” that quantity to the next value that has the same number of 1’s. For
example, the string xxx0 1111 0000, where xxx represents arbitrary bits, becomes xxx1 0000 O111.
The algorithm first identifies the “smallest” 1-bit inx, with s =x &—x, giving 0000 0001 0000. This
1s added to x, giving r = xxx1 0000 0000. The 1-bit here is one bit of the result. For the other bits, we
need to produce a right-adjusted string of n — 1 1’s, where # is the size of the rightmost group of 1’s
inx. This can be done by first forming the exclusive or of r and x, which gives 0001 1111 0000 in
our example.

This has two too many 1’s and needs to be right-adjusted. This can be accomplished by dividing it
by s, which right-adjusts it (s is a power of 2), and shifting it right two more positions to discard the
two unwanted bits. The final result is the or of this and r.

In computer algebra notation, the result is y in

s—x&—x
r—s+x (2)
yer| (x®r)L2)Ls)
A complete C procedure is given in Figure 2—1. It executes in seven basic RISC instructions, one
of which is division. (Do not use this procedure with x = 0; that causes division by 0.)

If division is slow but you have a fast way to compute the number of trailing zeros function ntz(x),
the number of leading zeros function nlz(x), or population count (pop(x) is the number of 1-bits in
X), then the last line of Equation (2) can be replaced with one of the following formulas. (The first
two methods can fail on a machine that has modulo 32 shifts.)

yer | ((x®r)=(2+ntz(x)))
y<r | ((x®r)= (33 —nlzs)))
yer | {(l xi::(pop(x@r)—Z}}— I}

Click here to view code image
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unsigned snoob (unsigned x) {
unsigned smallest, ripple, ones;
// x = xxx0 1111 0000

smallest = x & -x; // 0000 0001 0000
ripple = x + smallest; // xxx1 0000 0000
ones = x ~ ripple; // 0001 1111 0000
ones = (ones >> 2)/smallest; // 0000 0000 0111
return ripple | ones; // xxx1l 0000 0111

FIGURE 2—-1. Next higher number with same number of 1-bits.

2-2 Addition Combined with Logical Operations

We assume the reader is familiar with the elementary identities of ordinary algebra and Boolean
algebra. Below is a selection of similar identities involving addition and subtraction combined with
logical operations.

a. —x = —x+1

b. = —(x—1)

C. —x = -x-1

d. -—Xx = x+1

e. -—x = x—1

f. Xty =x——p-1

g. = (x@y)+2(x&y)
h. (x| tx&y)

g =2(x | ) -(x®y)
J- x=-y =x+-yp+1

k. = (x®@y)-2(~x&y)
L = (&)~ (~x &)
L = 2(x&p)-(xDy)
n. x®y = (x| y)-(x&y)

0. x&-—y = (x|»-y

p- = x—(x&y)

Q. —(x-yp) =y-x-1

I. = —xty

s, X=y = (x&y)-(x | y)-1
t = (x&p)+(x | )
Hs x|y =x&—y)ty

oo x&y = (x| p) -

Equation (d) can be applied to itself repeatedly, giving ———x =x + 2, and so on. Similarly, from
(e) we have ———x =x —2. So we can add or subtract any constant using only the two forms of



complementation.

Equation (f) 1s the dual of (j), where (j) 1s the well-known relation that shows how to build a
subtracter from an adder.

Equations (g) and (h) are from HAKMEM memo [HAK, item 23]. Equation (g) forms a sum by first
computing the sum with carries ignored (x © y), and then adding in the carries. Equation (h) is simply
modifying the addition operands so that the combination O + 1 never occurs at any bit position; it is
replaced with 1 + 0.

It can be shown that in the ordinary addition of binary numbers with each bit independently equally
likely to be 0 or 1, a carry occurs at each position with probability about 0.5. However, for an adder
built by preconditioning the inputs using (g), the probabilityis about 0.25. This observation is
probably not of value in building an adder, because for that purpose the important characteristic is the
maximum number of logic circuits the carry must pass through, and using (g) reduces the number of
stages the carry propagates through by only one.

Equations (k) and (1) are duals of (g) and (h), for subtraction. That is, (k) has the interpretation of
first forming the difference ignoring the borrows (x © y), and then subtracting the borrows. Similarly,
Equation (1) is simply modifying the subtraction operands so that the combination 1 — 1 never occurs
at any bit position; it is replaced with 0 — 0.

Equation (n) shows how to implement exclusive or in only three instructions on a basic RISC.
Using only and-or-not logic requires four instructions ((x |y) & —(x & y)). Similarly, (u) and (v)
show how to implement and and or in three other elementary instructions, whereas using DeMorgan’s
laws requires four.

2-3 Inequalities among Logical and Arithmetic Expressions

Inequalities among binary logical expressions whose values are interpreted as unsigned integers are
nearly trivial to derive. Here are two examples:

(x®p)<(x | p), and

(x&yp)<(x=y).
These can be derived from a list of all binary logical operations, shown in Table 2—1.

TABLE 2—1. THE 16 BINARY LOGICAL OPERATIONS

| T 3 SRS T i*’j
o 2 8 e e O O N e 1 e el e R B e
ojojofofojojojorojo|1r 1Ll
oj1rjo0fofojojrf{rfrjrjiojoLoproypnrf{nry1]i
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Let f(x, y) and g(x, y) represent two columns in Table 2—1. If for each row in which f(x,y) is 1,
g(x,y) also 1s 1, then for all (x,y), f(x, y) < g(x, y). Clearly, this extends to word-parallel logical



operations. One can easily read off such relations (most of which are trivial) as (x & y) < x < (x | —
), and so on. Furthermore, if two columns have a row in which one entry is 0 and the other is 1, and
another row in which the entries are 1 and 0, respectively, then no inequality relation exists between
the corresponding logical expressions. So the question of whether or notf(x, y) = g(x, y) is
completely and easily solved for all binary logical functions f'and g.

Use caution when manipulating these relations. For example, for ordinary arithmetic, ifx +y <a
and z < x, then z + y < a, but this inference is not valid if “+” is replaced with or.

Inequalities involving mixed logical and arithmetic expressions are more interesting. Below is a
small selection.

a (x | ») 2 max(x, y)

b. (x & y) < min(x, y)

C. (x | y) £x+y ifthe addition does not overflow
d. (x | y)=x+y ifthe addition overflows

e. -y < (xDy)

The proofs of these are quite simple, except possibly for the relation x —y| < (x ®y). By x —y| we
mean the absolute value of x —y, which can be computed within the domain of unsigned numbers as
max(x, y) — min(x, y). This relation can be proven by induction on the length of x and y (the proofis a
little easier if you extend them on the left rather than on the right).

2—4 Absolute Value Function

If your machine does not have an instruction for computing the absolute value, this computation can
usually be done in three or four branch-free instructions. First, compute y «— x = 31, and then one of
the following:

abs nabs
(x@y)-y y=(x®y)
x+y) @y (y-x)®y

x—-2x&y) (2x & y)—-x
By “2x” we mean, of course, x + x or x << 1.

If you have fast multiplication by a variable whose value is 1, the following will do:
((x=30) | D=*x
2-5 Average of Two Integers

The following formula can be used to compute the average of two unsigned integers, [ (x +y)/2 |
without causing overflow [Dietz]:

(x&y)+((x@yp)=1) (3)
The formula below computes I'(x + y)/2 1 for unsigned integers:

x| »-((x®p)=1)



To compute the same quantities (“floor and ceiling averages™) for signed integers, use the same
formulas, but with the unsigned shift replaced with a signed shift.

For signed integers, one might also want the average with the division by 2 rounded toward 0.
Computing this “truncated average” (without causing overflow) is a little more difficult. It can be
done by computing the floor average and then correctingit. The correction is to add 1 if]
arithmetically, x + y is negative and odd. But x + y is negative if and only if the result of (3), with the
unsigned shift replaced with a signed shift, is negative. This leads to the following method (seven
instructions on the basic RISC, after commoning the subexpression x @ y):

te(x&p)+((xdy)=> 1)

t+((t=31)&(x@y))

Some common special cases can be done more efficiently. If x and y are signed integers and known
to be nonnegative, then the average can be computed as simply (x +y) = 1. The sum can overflow,
but the overflow bit is retained in the register that holds the sum, so that the unsigned shift moves the
overflow bit to the proper position and supplies a zero sign bit.

Ifx and y are unsigned integers and x <y, or ifx andy are signed integers and x <y (signed
comparison), then the average is given by x + (¥ —x) = 1. These are floor averages, for example, the
average of —1 and 0 is —1.

2—6 Sign Extension

By “sign extension,” we mean to consider a certain bit position in a word to be the sign bit, and we
wish to propagate that to the left, ignoring any other bits present. The standard way to do this is with
shift left logical followed by shift right signed. However, if these instructions are slow or
nonexistent on your machine, it can be done with one of the following, where we illustrate by
propagating bit position 7 to the left:

((x + 0x00000080) & 0x000000FF) — 0x00000080
((x & 0x000000FF) @ 0x00000080) — 0x00000080
(x & 0x0000007F) — (x & 0x00000080)

[T

The “+” above can also be or “®.” The second formula 1s particularly useful if you know that the
unwanted high-order bits are all 0’s, because then the and can be omitted.

2—7 Shift Right Signed from Unsigned

If your machine does not have the shift right signed instruction, it can be computed using the formulas
shown below. The first formula is from [GM], and the second is based on the same idea. These
formulas hold for 0 <»n < 31 and, if the machine has mod-64 shifts, the last holds for 0 <n < 63. The
last formula holds for any # if by “holds” we mean “treats the shift amount to the same modulus as
does the logical shift.”

When 7 is a variable, each formula requires five or six instructions on a basic RISC.



((x + 0x80000000) = ) — (0x80000000 =- 1)
t < 0x80000000 = n; (x=n @) ¢
t < (x & 0x80000000) = n; (x = n)—(t+1)
(x=n) | (-(x=31)<<31-n)

t—(x=31) (x®t)=n Dt
In the first two formulas, an alternative for the expression (x80000000 - n is 1<<31 — n.

If n is a constant, the first two formulas require only three instructions on many machines. If n = 31,
the function can be done in two instructions with —(x = 31).

2—8 Sign Function
The sign, or signum, function is defined by

-1, x<0,
sign(x) =4 0, x=0,
l; 540

It can be calculated with four instructions on most machines [Hop]:

(x=31) | (—x£31)
If you don’t have shift right signed, then use the substitute noted at the end of Section 2—7, giving
the following nicely symmetric formula (five instructions):
—(x 5% 31) | (x5 31)
Comparison predicate instructions permit a three-instruction solution, with either
(x>0)—(x<0). or
(x=0)-(x=<0).

Finally, we note that the formula (—x - 31) — (x = 31) almost works; it fails only for x = —231.

(4)

2-9 Three-Valued Compare Function
The three-valued compare function, a slight generalization of the sign function, is defined by

—1, x<w,
cmp(x,¥) =41 0, x=y,
ly, x>0

There are both signed and unsigned versions, and unless otherwise specified, this section applies to
both.

Comparison predicate instructions permit a three-instruction solution, an obvious generalization of
Equations in (4):



(x>y)-(x<y), or
(x2y) - (x<p).
A solution for unsigned integers on PowerPC is shown below [CWG]. On this machine, “carry” is
“not borrow.”

Click here to view code image

subf R5,Ry,Rx # R5 <-- Rx - Ry.

subfc R6,Rx,Ry # R6 <-- Ry - Rx, set carry.

subfe R7,Ry,Rx # R7 <-- Rx - Ry + carry, set carry.
subfe R8,R7,R5 # R8 <-— R5 - R7 + carry, (set carry).

If limited to the instructions of the basic RISC, there does not seem to be any particularly good way
to compute this function. The comparison predicates x <), x <y, and so on, require about five
instructions (see Section 2—12), leading to a solution in about 12 instructions (using a small amount of
commonality in computingx <y andx >y). On the basic RISC it’s probably preferable to use
compares and branches (six instructions executed worst case if compares can be commoned).

2—10 Transfer of Sign Function
The transfer of sign function, called ISIGN in Fortran, is defined by

[l abs(x), v=0.

ISIGN(x, y) =
B 1—abs{x}, y <0,

This function can be calculated (modulo 232) with four instructions on most machines:

f<y=31; t— (x®y)=31;
[SIGN(x, y) = (abs(x) @ ) —¢ ISIGN(x,y) = (xD )¢
= (abs(x)+1) D¢ = (x+1) Pt

2—-11 Decoding a “Zero Means 2**n” Field

Sometimes a 0 or negative value does not make much sense for a quantity, so it is encoded in an n-bit
field with a 0 value being understood to mean 2n, and a nonzero value having its normal binary
interpretation. An example is the length field of PowerPC’s load string word immediate (1swi)
instruction, which occupies five bits. It 1s not useful to have an instruction that loads zero bytes when
the length 1s an immediate quantity, but it 1s definitely useful to be able to load 32 bytes. The length
field could be encoded with values from 0 to 31 denoting lengths from 1 to 32, but the “zero means
32” convention results insimpler logic when the processor must also support a corresponding
instruction with a variable (in-register) length that employs straight binary encoding (e.g., PowerPC’s
1swx InStruction).

It 1s trivial to encode an integer in the range 1 to 2” into the “zero means 2" encoding—simply

mask the integer with 2” — 1. To do the decoding without a test-and-branch is not quite as simple, but
here are some possibilities, illustrated for a 3-bit field. They all require three instructions, not
counting possible loads of constants.



(x—1D&T7)+1 ((x+7)| —-8)+9 8- (x&7)
(x+7)&7)+1 ((x+7) | 8)-7 —(—x | —-8)
x-=1}) [ =8)+2% (x—1)&8)+x

2—12 Comparison Predicates

A “comparison predicate” is a function that compares two quantities, producing a single bit result of
1 if the comparison is true, and 0 if the comparison is false. Below we show branch-free expressions
to evaluate the result into the sign position. To produce the 1/0 value used by some languages (e.g.,
C), follow the code with a shift right of 31. To produce the —1/0 result used by some other languages
(e.g., Basic), follow the code with a shift right signed of 31.

These formulas are, of course, not of interest on machines such as MIPS and our model RISC,
which have comparison instructions that compute many of these predicates directly, placing a 0/1-
valued result in a general purpose register.

x=y: abs(x —y) -1
abs(x —y + 0x80000000)
nlz(x —y) << 26
—(nlz(x —y) = 5)
—(x-y | y—x)

XEy: nabs(x — y)
nlz(x —y) - 32
x-y|y-x
x <y: (x-p)D[(xDy) & ((x-y) ®x)]
(x&—y) | (x=p) & (x-y))
nabs(doz(y, x)) [GSO]
X<y (x| )& ((x@y) | =(y-x))
(x=p) 5 1)+ (x & —p) [GSO]
x2y: (—x&y) | ((x=p) & (x-y))
(=x&y) | ((=x | p) & (x—y))
x<y: (=x [P &(xBy) | =(y-x))

A machine instruction that computes the negative of the absolute value is handy here. We show this
function as “nabs.” Unlike absolute value, it is well defined in that it never overflows. Machines that
do not have nabs, but have the more usual abs, canuse —abs(x) for nabs(x). Ifx is the maximum
negative number, this overflows twice, but the result is correct. (We assume that the absolute value
and the negation of the maximum negative number is itself.) Because some machines have neither abs
nor nabs, we give an alternative that does not use them.

The “nlz” function is the number of leading 0’s in its argument. The “doz” function (difference or



zero) is described on page 41. For x >y, x >y, and so on, interchange x and y in the formulas for x <
» x <y, and so on. The add of 0x8000 0000 can be replaced with any instruction that inverts the high-
order bit (inx, y, or x — y).

Another class of formulas can be derived from the observation that the predicate x <y is given by
the sign of x/2 — /2, and the subtraction in that expression cannot overflow. The result can be fixed
up by subtracting 1 in the cases in which the shifts discard essential information, as follows:

x<y: E=D-=D-(—x&y&1)

Xy EED)-LD-(—x&y&l)
These execute in seven instructions on most machines (six if it has and not), which is no better than
what we have above (five to seven instructions, depending upon the fullness of the set of logic
instructions).
The formulas above involving nlz are due to [Shep], and his formula for the x =y predicate is
particularly useful, because a minor variation of it gets the predicate evaluated to a 1/0-valued result
with only three instructions:

nlz(x - y) = 5.
Signed comparisons to 0 are frequent enough to deserve special mention. There are some formulas
for these, mostly derived directly from the above. Again, the result is in the sign position.
x=0: abs(x) -1
abs(x + 0x80000000)
nlz(x) << 26
—(nlz(x) = 3)
—(x | —x)
-x&(x—1)
x#0: nabs(.x)
nlz(x) - 32
x| =x

(x=1)-x [CWG]

x<0: h

x=0: x| (x=1)
X | =—x

x>0: X @ nabs(x)
(x=1)—x
—-Xx & —x

x=0: —X



Signed comparisons can be obtained from their unsigned counterparts by biasing the signed
operands upward by 23! and interpreting the results as unsigned integers. The reverse transformation
also works.2 Thus, we have

x<y =x+23 2 y+23,

xZy=x-23<cy-23,
Similar relations hold for <, £, and so on. In these relations, one can use addition, subtraction, or
exclusive or with 23!, They are all equivalent, as they simply invert the sign bit. An instruction like
the basic RISC’s add immediate shifted is useful to avoid loading the constant 23!.

Another way to get signed comparisons from unsigned is based on the fact that if x and y have the
same sign, thenx <y = x £y, whereas if they have opposite signs, then x <y = x =y [Lamp].
Again, the reverse transformation also works, so we have

X<y =(x<y)®x; Dy,,.
where x3; and y5; are the sign bits of x and y, respectively. Similar relations hold for <, <, and so on.

Using either of these devices enables computing all the usual comparison predicates other than =
and # in terms of any one of them, with at most three additional instructions on most machines. For
example, let us take x <y as primitive, because it is one of the simplest to implement (it is the carry
bit from y — x). Then the other predicates can be obtained as follows:

x<y = —(p+23 g x+23)

'ti:y = 'r_l_'z.]l é '1;_|_23'|

I

X>y=—(x+2% < y+23)
xzy = ,}1‘"3“ "'g Y+ 23

xZy=—(y< x)

XHy=—=(x<y)

|A=

ATy =P X

Comparison Predicates from the Carry Bit

If the machine can easily deliver the carry bit into a general purpose register, this may permit concise
code for some of the comparison predicates. Below are several ofthese relations. The notation
carry(expression) means the carry bit generated by the outermost operation in expression. We assume
the carry bit for the subtractionx —y is what comes out of the adder for x + y + 1, which is the
complement of “borrow.”



X =y carry(0 — (x—y)). or carrv({x+ ) + 1), or

carry((x—y—1)+1)

X#y: carry((x—y) — 1), Le., carry({(x—y) + (-1))

X<y —carry((x + 231) — (y + 231)), or —carry(x —y) B x5, D yy,
x<y: carry((y + 231) — (x + 231)), or carry(y — x) @ x;, D y;,

x ey —carry(x —y)

xty: carry(y — x)

x=1: carry(0 = x), or carry(x + 1)

x=0: carry(x— 1), e, carryv(x + (—1))

x < carry(x + x)

x=0: carry(23! — (x + 231))

For x >y, use the complement of the expression for x <y, and similarly for other relations involving
“greater than.”

The GNU Superoptimizer has been applied to the problem of computing predicate expressions on
the IBM RS/6000 computer and its close relative PowerPC [GK]. The RS/6000 has instructions for
abs(x), nabs(x), doz(x, y), and a number of forms of add and subtract that use the carry bit. It was
found that the RS/6000 cancompute all the integer predicate expressions with three or fewer
elementary (one-cycle) instructions, a result that surprised even the architects of the machine. “All”
includes the six two-operand signed comparisons and the four two-operand unsigned comparisons, all
of these with the second operand being 0, and all in forms that produce a 1/0 result or a —1/0 result.
PowerPC, which lacks abs(x), nabs(x), and doz(x, y), can compute all the predicate expressions in
four or fewer elementary instructions.

How the Computer Sets the Comparison Predicates

Most computers have a way of evaluating the integer comparison predicates to a 1-bit result. The
result bit may be placed in a “condition register” or, for some machines (such as our RISC model), in
a general purpose register. In either case, the facility is often implemented by subtracting the
comparison operands and then performing a small amount of logic on the result bits to determine the
1-bit comparison result.

Below is the logic for these operations. It is assumed that the machine computes x —yasx + j + 1,
and the following quantities are available in the result:

C,, the carry out of the high-order position
C;, the carry into the high-order position

N, the sign bit of the result
Z, which equals 1 if the result, exclusive of C,, is all-0, and is otherwise 0

Then we have the following in Boolean algebra notation (juxtaposition denotes and, + denotes or):



V. | St T Be (signed overflow)

X =J: L

X%y 7

X<y NaV
x<y: N® V) +Z
t - Irl {.'*'p'rE !_;}‘_7
xXzy: N=FV

x £y e

x% V: {T” + 7

: L) C.Z

x>y C,

2—-13 Overflow Detection

“Overflow” means that the result of an arithmetic operation is too large or too small to be correctly
represented in the target register. This section discusses methods that a programmer might use to
detect when overflow has occurred, without using the machine’s “status bits” that are often supplied
expressly for this purpose. This is important, because some machines do not have such status bits
(e.g., MIPS), and even if the machine is so equipped, it is often difficult or impossible to access the
bits from a high-level language.

Signed Add/Subtract

When overflow occurs on integer addition and subtraction, contemporary machines invariably
discard the high-order bit of the result and store the low-order bits that the adder naturally produces.
Signed integer overflow of addition occurs if and only if the operands have the same sign and the sum
has a sign opposite to that of the operands. Surprisingly, this same rule applies even if there is a carry
into the adder—that is, if the calculation is x + y + 1. This is important for the application of adding
multiword signed integers, in which the last addition is a signed addition of two fullwords and a
carry-in that may be 0 or +1.

To prove the rule for addition, let x and y denote the values of the one-word signed integers being
added, let ¢ (carry-in) be 0 or 1, and assume for simplicity a 4-bit machine. Then if the signs of x and
y are different,

—8<x<-1.and
0<y<7,

or similar bounds apply ifx is nonnegative and y is negative. In either case, by adding these
inequalities and optionally adding in 1 for c,

—8<x+y+c<T.
This is representable as a 4-bit signed integer, and thus overflow does not occur when the operands
have opposite signs.

Now suppose x and y have the same sign. There are two cases:



(a) (b)

|
A
|

|
=
1A
M

Thus,

(a) (b)
—16<x+y+ec=-1 Q=x+y+e=13.
Overflow occurs if the sum is not representable as a 4-bit signed integer—that is, if

(a) (b)
—16<x+ty+c<-9 SEx+y s ll,
In case (a), this is equivalent to the high-order bit of the 4-bit sum being 0, which is opposite to the
sign of x and y. In case (b), this is equivalent to the high-order bit of the 4-bit sum being 1, which
again is opposite to the sign of x and y.

For subtraction of multiword integers, the computation of interest is x — y — ¢, where again ¢ is 0 or
1, with a value of 1 representing a borrow-in. From an analysis similar to the above, it can be seen
that overflow in the final value of x —y — ¢ occurs if and only if x and y have opposite signs and the
sign of x —y — ¢ 1s opposite to that of x (or, equivalently, the same as that of y).

This leads to the following expressions for the overflow predicate, with the result being in the sign

position. Following these with a shift right or shift right signed of 31 produces a 1/0- or a —1/0-
valued result.

ol o X-y-c
(x=p)&((x+y+c)Dx) (x@p)&((x—y—c)®Dx)
((x+y+e)@x)&((x+y+te)@y) (x-y-0c)@x)&((x-y-c)=yp)

By choosing the second alternative in the first column, and the first alternative in the second column
(avoiding the equivalence operation), our basic RISC can evaluate these tests with three instructions
in addition to those required to computex +y +c¢ orx —y —c. A fourth instruction (branch if
negative) can be added to branch to code where the overflow condition is handled.

If executing with overflow interrupts enabled, the programmer may wish to test to see if a certain

addition or subtraction will cause overflow, in a way that does not cause it. One branch-free way to
do this is as follows:

x+ty+te xX—y-c¢
7 < (x=y) & 0x80000000 z < (x @y) & 0x80000000
& (((x@z)tyte)=y) & (((x®z)-y-c)@By)

The assignment to z in the left column sets z = 0x80000000 if x and y have the same sign, and sets g =
0 if they differ. Then, the addition in the second expression is done with x ® z and y having different
signs, so it can’t overflow. If x and y are nonnegative, the sign bit in the second expression will be 1
if and only if (x — 231) + y + ¢ > 0—that is, iffx + y + ¢ > 23!, which is the condition for overflow in
evaluatingx +y + c. If x and y are negative, the sign bit in the second expression will be 1 iff (x +



231) + y+ ¢ < 0—that is, iff x + y + ¢ <—23!, which again is the condition for overflow. The and with
z ensures the correct result (0 in the sign position) ifx and y have opposite signs. Similar remarks

apply to the case of subtraction (right column). The code executes in nine instructions on the basic
RISC.

It might seem that if the carry from addition is readily available, this might help in computing the
signed overflow predicate. This does not seem to be the case; however, one method along these lines
is as follows.

If x is a signed integer, then x + 23! is correctly represented as an unsigned number and is obtained
by inverting the high-order bit of x. Signed overflow in the positive direction occurs ifx +y > 231—
that is, if (x + 231) + (y + 231) > 3 - 231, This latter condition is characterized by carry occurring in the

unsigned add (which means that the sum is greater than or equal to 23?) and the high-order bit of the
sum being 1. Similarly, overflow in the negative direction occurs if the carry is 0 and the high-order
bit of the sum is also O.

This gives the following algorithm for detecting overflow for signed addition:

Compute (x ® 231) + (y ® 231), giving sum s and carry c.
Overflow occurred iff ¢ equals the high-order bit of s.

The sum is the correct sum for the signed addition, because inverting the high-order bits of both
operands does not change their sum.

For subtraction, the algorithm is the same except that in the first step a subtraction replaces the
addition. We assume that the carry is that which is generated by computing x —y asx + y + 1. The
subtraction is the correct difference for the signed subtraction.

These formulas are perhaps interesting, but on most machines they would not be quite as efficient
as the formulas that do not even use the carry bit (e.g., overflow = (x = y)& (s © x) for addition, and
(x @ y) &(d @ x) for subtraction, where s and d are the sum and difference, respectively, of x and y).

How the Computer Sets Overflow for Signed Add/Subtract

Machines often set “overflow” for signed addition by means of the logic “the carryinto the sign
position is not equal to the carry out of the sign position.” Curiously, this logic gives the correct
overflow indication for both addition and subtraction, assuming the subtraction x — y is done by x + y
+ 1. Furthermore, it is correct whether or not there is a carry- or borrow-in. This does not seem to
lead to any particularly good methods for computing the signed overflow predicate in software,
however, even though it is easy to compute the carry into the sign position. For addition and
subtraction, the carry/borrow into the sign positionis given by the sign bit after evaluating the
following expressions (where ¢ is 0 or 1):

carry borrow
(x+y+tc)DxDy (x—y—c)@xDy
In fact, these expressions give, at each position i, the carry/borrow into position i.
Unsigned Add/Subtract

The following branch-free code can be used to compute the overflow predicate for unsigned



add/subtract, with the result being in the sign position. The expressions involving a right shift are
probably useful only when it is known that ¢ = 0. The expressions in brackets compute the carry or
borrow generated from the least significant position.

x +y + c. unsigned
(x&y) | ((x [ y)&(xtyto))
(x=D+@=D+[((x&y) | (x| p) &) &1]

X —y—c. unsigned
(—x&y) | (x=y) & (x—y-c))
(=x&y) | (-x [ ) &(x-—y-0))

(x=D-p=D-[((-x&y) | (-x | y) &) &1]

For unsigned add’s and subtract’s, there are much simpler formulas in terms of comparisons
[MIPS]. For unsigned addition, overflow (carry) occurs if the sum is less (by unsigned comparison)
than either of the operands. This and similar formulas are given below. Unfortunately, there is no way
in these formulas to allow for a variable ¢ that represents the carry- or borrow-in. Instead, the

program must test ¢, and use a different type of comparison depending upon whether ¢ is 0 or 1.

x+y,unsigned x+y+1,unsigned x-y,unsigned x—y-—1,unsigned
—xty X<y x 2y X<y

xty<x x+y+1%x X—y>X x-y—-13x
The first formula for each case above is evaluated before the add/subtract that may overflow, and it

provides a way to do the test without causing overflow. The second formula for each case is
evaluated after the add/subtract that may overflow.

There does not seem to be a similar simple device (using comparisons) for computing the signed
overflow predicate.

Multiplication

For multiplication, overflow means that the result cannot be expressed in 32 bits (it can always be
expressed in 64 bits, whether signed or unsigned). Checking for overflow is simple if you have
access to the high-order 32 bits of the product. Let us denote the two halves of the 64-bit product by
hi(x % y) and lo(x X y). Then the overflow predicates can be computed as follows [ MIPS]:

X % y, unsigned x x y, signed
hifx x y) =0 hi(x x y) # (lo(x x y) = 31)
One way to check for overflow of multiplication is to do the multiplication and then check the

result by dividing. Care must be taken not to divide by 0, and there is a further complication for
signed multiplication. Overflow occurs if the following expressions are true:



Unsigned Signed
T X*Y I X%}

y20R iy (3<0&x=-2%) | (y#0&z+y#x)

The complication arises when x = —23! and y = —1. In this case the multiplication overflows, but the

machine may very well give a result of —231. This causes the division to overflow, and thus any result
is possible (for some machines). Therefore, this case has to be checked separately, which is done by
the termy <0 & x = —231. The above expressions use the “conditional and” operator to prevent
dividing by 0 (in C, use the s« operator).

It is also possible to use division to check for overflow of multiplication without doing the
multiplication (that is, without causing overflow). For unsigned integers, the product overflows iff xy

> 232 — 1, orx > ((232 — 1)/y), or, since x is an integer, x > | (2°? — 1)/y ). Expressed in computer
arithmetic, this 1s

y#0 &x £ (OXFFFFFFFF ! y).
For signed integers, the determination of overflow ofx * y is not so simple. Ifx and y have the
same sign, then overflow occurs iff xy > 23! — 1. If they have opposite signs, then overflow occurs ift

xy < =231 These conditions can be tested as indicated in Table 2-2, which employs signed division.
This test is awkward to implement, because of the four cases. It is difficult to unify the expressions

very much because of problems with overflow and with not being able to represent the number +231.

The test can be simplified if unsigned division is available. We can use the absolute values ofx
and y, which are correctly represented under unsigned integer interpretation. The complete test can
then be computed as shown below. The variable ¢ = 23! —1 if x and y have the same sign, and ¢ = 23!

otherwise.

TABLE 2—2. OVERFLOW TEST FOR SIGNED MULTIPLICATION

_v::-l] yﬂ[}
x>0 x > 0x7FFFFFFF <y y < 0x80000000 -+ x
x=0 x < 0x80000000 = y x=0 E’E}-‘ < 0x7FFFFFFF = x

c—((x=y)=31)+23
X < abs(x)
y < abs(y)
y20&xL(cly)
The number of leading zeros instruction can be used to give an estimate of whether or notx *y
will overflow, and the estimate can be refined to give an accurate determination. First, consider the
multiplication of unsigned numbers. It is easy to show that if x and y, as 32-bit quantities, have m and

n leading 0’s, respectively, then the 64-bit product has either m + n or m + n + 1 leading 0’s (or 64, if
either x = 0 or y = 0). Overflow occurs if the 64-bit product has fewer than 32 leading 0’s. Hence,



nlz(x) + nlz(y) > 32: Multiplication definitely does not overflow.
nlz(x) + nlz(y) < 30: Multiplication definitely does overflow.

For nlz(x) + nlz(y) = 31, overflow may or may not occur. In this case, the overflow assessment can
be made by evaluating t = x| y/2 |. This will not overflow. Since xy is 2¢ or, if y 1s odd, 2¢ + x, the
product xy overflows if ¢ > 23!, These considerations lead to a plan for computing xy, but branching
to “overflow” if the product overflows. This plan is shown in Figure 2-2.

For the multiplication of signed integers, we can make a partial determination of whether or not
overflow occurs from the number of leading 0’s of nonnegative arguments, and the number of leading
I’s of negative arguments. Let

nlz(x) + nlz(¥x). and
n = nlzy) + nlz(y).

Click here to view code image

¥

unsigned x, vy, z, m, n, t;
m nlz(x):;

n nlz(y);

if (m + n <= 30) goto overflow;
t = x*¥(y >> 1);

if ((int)t < 0) goto overflow;
z = t*2;

i

) goto overflow;

// z is the correct product of x and y.

FIGURE 2-2. Determination of overflow of unsigned multiplication.
Then, we have

m + n > 34: Multiplication definitely does not overflow.
m + n < 31: Multiplication definitely does overflow.

There are two ambiguous cases: 32 and 33. The case m +n = 33 overflows only when both

arguments are negative and the true product is exactly 23! (machine result is —2°!), so it can be
recognized by a test that the product has the correct sign (that is, overflow occurred ifm ©n © (m *
n) <0). When m + n =32, the distinction is not so easily made.

We will not dwell on this further, except to note that an overflow estimate for signed multiplication
can also be made based on nlz(abs(x)) + nlz(abs(y)), but again there are two ambiguous cases (a sum
of 31 or 32).

Division
For the signed division x + y, overflow occurs if the following expression is true:

y=0](x=0x80000000 & y=-1)



Most machines signal overflow (or trap) for the indeterminate form 0 + 0.

Straightforward code for evaluating this expression, including a final branch to the overflow
handling code, consists of seven instructions, three of which are branches. There do not seem to be
any particularly good tricks to improve on this, but here are a few possibilities:

[abs(y ® 0x80000000) | (abs(x) & abs(y = 0x80000000))] <0

That 1s, evaluate the large expression in brackets, and branch if the result is less than 0. This executes
in about nine instructions, counting the load of the constant and the final branch, on a machine that has
the indicated instructions and that gets the “compare to 0” for free.

Some other possibilities are to first compute z from
z < (x @ 0x80000000) | (y + 1)

(three instructions on many machines), and then do the test and branch ony =0 |z =0 in one of the
following ways:

(| &z -2)=20
(nabs(y) & nabs(z)) = 0

((nlz(y) | nlz(z)) = 5)=0
These execute in nine, seven, and eight instructions, respectively, on a machine that has the indicated
instructions. The last line represents a good method for PowerPC.

For the unsigned division x £y, overflow occurs if and only if y = 0.

Some machines have a “long division” instruction (see page 192), and you may want to predict,
using elementary instructions, when it would overflow. We will discuss this in terms of an instruction
that divides a doubleword by a fullword, producing a fullword quotient and possibly also a fullword
remainder.

Such an instruction overflows if either the divisor is 0 or if the quotient cannot be represented in 32
bits. Typically, in these overflow cases both the quotient and remainder are incorrect. The remainder
cannot overflow in the sense of being too large to represent in 32 bits (it is less than the divisor in
magnitude), so the test that the remainder will be correct is the same as the test that the quotient will
be correct.

We assume the machine either has 64-bit general registers or 32-bit registers and there is no
problem doing elementary operations (shifts, adds, and so forth) on 64-bit quantities. For example,
the compiler might implement a doubleword integer data type.

In the unsigned case the test is trivial: for x + y withx a doubleword and y a fullword, the division
will not overflow if (and only 1f) either of the following equivalent expressions is true.

yz0&x<(y=<32)

y#0& (x>32)<y
On a 32-bit machine, the shifts need not be done; simply compare y to the register that contains the
high-order half of x. To ensure correct results on a 64-bit machine, it is also necessary to check that
the divisor y is a 32-bit quantity (e.g., check that (y = 32) = 0).



The signed case is more interesting. It is first necessary to check thaty # 0 and, on a 64-bit
machine, thaty is correctly represented in 32 bits (check that ((y < 32) = 32) = y). Assuming these
tests have been done, the table that follows shows how the tests might be done to determine precisely
whether or not the quotient is representable in 32 bits by considering separately the four cases of the
dividend and divisor each being positive or negative. The expressions in the table are in ordinary
arithmetic, not computer arithmetic.

In each column, each relation follows from the one above it in an if-and-only-if way. To remove
the floor and ceiling functions, some relations from Theorem D1 on page 183 are used.

xz0,y>0 xz0,y<0 x<Oy>0 x<0y<O

Lx/y <230 [x/y]>-23 [x/y]>-231 Lx/y | <23

x/y <23 [x/y]>-231-1 [x/y]>-23-1 x/y<23

% 28y x/y>-—231_1 x/y>—23_1 x> 231y
x<=23y—y x>=23y—y —x < 23(—p)

x<22W(=)+ (=) —x<2y+y
As an example of interpreting this table, consider the leftmost column. It applies to the case in
whichx > 0 and y > 0. In this case the quotient is | x/y |, and this must be strictly less than 23! to be
representable as a 32-bit quantity. From this it follows that the real number x/y must be less than 23!,

or x must be less than 2°y. This test can be implemented by shifting y left 31 positions and comparing
the result to x.

When the signs ofx and y differ, the quotient of conventional division is lx/y1. Because the
quotient is negative, it can be as small as —231.

In the bottom row of each column the comparisons are all of the same type (less than). Because of
the possibility that x is the maximum negative number, in the third and fourth columns an unsigned
comparison must be used. In the first two columns the quantities being compared begin with a leading
0-bit, so an unsigned comparison can be used there, too.

These tests can, of course, be implemented by using conditional branches to separate out the four
cases, doing the indicated arithmetic, and then doing a final compare and branch to the code for the
overflow or non-overflow case. However, branching can be reduced by taking advantage of the fact
that when y 1s negative, —y i1s used, and similarly for x. Hence the tests can be made more uniform by
using the absolute values of x and y. Also, using a standard device for optionally doing the additions
in the second and third columns results in the following scheme:

| SRR

x' = x|
y' =1yl
5 = (x®y)=63)&)'

if (x" £ (3" =< 31) + &) then {will not overflow]
Using the three-instruction method of computing the absolute value (see page 18), on a 64-bit version
of the basic RISC this amounts to 12 instructions, plus a conditional branch.



2—14 Condition Code Result of Add, Subtract, and Multiply

Many machines provide a “condition code” that characterizes the result of integer arithmetic
operations. Often there is only one add instruction, and the characterization reflects the result for both
unsigned and signed interpretation of the operands and result (but not for mixed types). The
characterization usually consists of the following:

» Whether or not carry occurred (unsigned overflow)
» Whether or not signed overflow occurred

» Whether the 32-bit result, interpreted as a signed two’s-complement integer and ignoring carry
and overflow, is negative, 0, or positive

Some older machines give an indication of whether the infinite precision result (thatis, 33-bit
result for add’s and subtract’s) 1s positive, negative, or 0. However, this indication is not easily used
by compilers of high-level languages, and so has fallen out of favor.

For addition, only nine of the 12 combinations of these events are possible. The ones that cannot
occur are “no carry, overflow, result > 0,” “no carry, overflow, result = 0,” and “carry, overflow,
result < 0.” Thus, four bits are, just barely, needed for the condition code. Two of the combinations
are unique in the sense that only one value of inputs produces them: Adding O to itself is the only way
to get “no carry, no overflow, result = 0,” and adding the maximum negative number to itself is the
only way to get “carry, overflow, result = 0.” These remarks remain true if there is a “carry in”—that
is, if we are computingx +y + 1.

For subtraction, let us assume that to compute x — y the machine actually computes x + 7 + 1, with
the carry produced as for an add (in this scheme the meaning of “carry” is reversed for subtraction, in
that carry = 1 signifies that the result fits in a single word, and carry = 0 signifies that the result does
not fit in a single word). Then for subtraction, only seven combinations of events are possible. The
ones that cannot occur are the three that cannot occur for addition, plus “no carry, no overflow, result
=0,” and “carry, overflow, result=0.”

If a machine’s multiplier can produce a doubleword result, then two multiply instructions are
desirable: one for signed and one for unsigned operands. (On a 4-bit machine, in hexadecimal, F x F
=01 signed, and F %< F = E1 unsigned.) For these instructions, neither carry nor overflow can occur,
in the sense that the result will always fit in a doubleword.

For a multiplication instruction that produces a one-word result (the low-order word of the
doubleword result), let us take “carry” to mean that the result does not fit in a word with the operands
and result interpreted as unsigned integers, and let us take “overflow” to mean that the result does not
fit in a word with the operands and result interpreted as signed two’s-complement integers. Then
again, there are nine possible combinations of results, with the missing ones being “no carry,
overflow, result > 0,” “no carry, overflow, result = 0,” and “carry, no overflow, result = 0.” Thus,
considering addition, subtraction, and multiplication together, ten combinations can occur.

2—15 Rotate Shifts

These are rather trivial. Perhaps surprisingly, this code works for n ranging from 0 to 32 inclusive,
even if the shifts are mod-32.



Rotate left n: y« (x<=n) | (x = (32-n))

Rotate right n:  y <« (x = n) | (x < (32—n))
If your machine has double-length shifts, they can be used to do rotate shifts. These instructions
might be written

Click here to view code image

shldi RT,RA,RB,I
shrdi RT,RA,RB,I

They treat the concatenation of RA and RB as a single double-length quantity, and shift it left or right
by the amount given by the immediate field :. (If the shift amount is in a register, the instructions are
awkward to implement on most RISCs because they require reading three registers.) The result of the
left shift is the high-order word of the shifted double-length quantity, and the result of the right shift is
the low-order word.

Using sn1ai, a rotate left of Rx can be accomplished by

Click here to view code image

shldi RT,Rx,Rx,I

and similarly a rotate right shift can be accomplished with shrai.

A rotate left shift of one position can be accomplished by adding the contents of a register to itself
with “end-around carry” (adding the carry that results from the addition to the sum in the low-order
position). Most machines do not have that instruction, but on many machines it can be accomplished
with two instructions: (1) add the contents of the register to itself, generating a carry (into a status
register), and (2) add the carry to the sum.

2—16 Double-Length Add/Subtract

Using one of the expressions shown on page 31 for overflow of unsigned addition and subtraction, we
can easily implement double-length addition and subtraction without accessing the machine’s carry
bit. To illustrate with double-length addition, let the operands be (x;, x,) and (y;, yy), and the result

be (21, zg). Subscript 1 denotes the most significant half, and subscript O the least significant. We
assume that all 32 bits of the registers are used. The less significant words are unsigned quantities.

Zp <Xy T ¥y

e [(xg &) | ((xg | ¥g) & =z)] = 31
1 ex ty, te
This executes in nine instructions. The second line can be ¢ < (2, < X,), permitting a four-instruction

solution on machines that have this comparison operator in a form that gives the resultasa 1 or 0 ina
register, such as the “surv” (Set on Less Than Unsigned) instruction on MIPS [MIPS].

Similar code for double-length subtraction (x — y) is



Lo Xg— Vo
b« [(—x,&py) | ((x4=p) & 2,)] = 31
< x -y, —b
This executes in eight instructions on a machine that has a full set of logical instructions. The second

line can be b < (x, £ y,), permitting a four-instruction solution on machines that have the
instruction.

2
SLTU

Double-length addition and subtraction can be done in five instructions on most machines by
representing the multiple-length data using only 31 bits of the least significant words, with the high-
order bit being 0 except momentarily when it contains a carry or borrow bit.

2—17 Double-Length Shifts

Let (x, x) be a pair of 32-bit words to be shifted left or right as if they were a single 64-bit quantity,
with x; being the most significant half. Let (y, y,) be the result, interpreted similarly. Assume the shift

amount n 1s a variable ranging from 0 to 63. Assume further that the machine’s shift instructions are
modulo 64 or greater. That 1s, a shift amount in the range 32 to 63 or —32 to —1 results in an all-0
word, unless the shift is a signed right shift, in which case the result is 32 sign bits from the word
shifted. (This code will not work on the Intel x86 machines, which have mod-32 shifts.)

Under these assumptions, the shift left double operation can be accomplished as follows (eight
instructions):

i

nexi<n | x;(32-n) | x;<<(n-32)
Vo€ Xy<n
The main connective in the first assignment must be or, not p/us, to give the correct result whenn =

32. If it is known that 0 <n < 32, the last term of the first assignment can be omitted, giving a six-
instruction solution.

Similarly, a shift right double unsigned operation can be done with
YoeXo=n | x,<(32-n) | x, = (n-32)

VX, = h
Shift right double signed 1s more difficult, because of an unwanted sign propagation in one of the
terms. Straightforward code follows:

if n<32theny,«x,>n | x;, <(32-n)
else yp < x, > (n—32)

V<X, =n
If your machine has the conditional move instructions, it is a simple matter to express this in
branch-free code, in which form it takes eight instructions. If the conditional move instructions are not
available, the operation can be done in ten instructions by using the familiar device of constructing a
mask with the shift right signed 31 instruction to mask the unwanted sign propagating term:



Vo Xp=n | x,<(32-n) | [(x;>(n—32)) & ((32 - n) = 31)]
yiex >n
2—18 Multibyte Add, Subtract, Absolute Value

Some applications deal with arrays of short integers (usually bytes or halfwords), and often execution
is faster if they are operated on a word at a time. For definiteness, the examples here deal with the
case of four 1-byte integers packed into a word, butthe techniques are easily adapted to other
packings, such as a word containing a 12-bitinteger and two 10-bit integers, and so on. These
techniques are of greater value on 64-bit machines, because more work is done in parallel.

Addition must be done in a way that blocks the carries from one byte into another. This can be
accomplished by the following two-step method:

1. Mask out the high-order bit of each byte of each operand and add (there will then be no carries
across byte boundaries).

2. Fix up the high-order bit of each byte with a 1-bit add of the two operands and the carry into
that bit.

The carry into the high-order bit of each byte is given by the high-order bit of each byte of the sum
computed in step 1. The subsequent similar method works for subtraction:

Addition
s «— (x & OxTF7FT7FTF) + (y & Ox7TF7F7F7F)
5« ((x @ y) & 0x80808080) @ s

Subtraction
d <« (x | 0x80808080)— (y & OxTF7F7F7F)

d<«— ((x®y) | xTFIFTFTF)=d
These execute in eight instructions, counting the load of 0x7F7F7F7F, on a machine that has a full set
of logical instructions. (Change the and and or of 0x80808080 to and not and or not, respectively, of
0x7F7F7F7F.)

There 1s a different technique for the case in which the word is divided into only two fields. In this
case, addition can be done by means of a 32-bit addition followed by subtracting out the unwanted
carry. On page 30 we noted that the expression (x +y) ®x ©y gives the carries into each position.
Using this and similar observations about subtraction gives the following code for adding/subtracting

two halfwords modulo 2'® (seven instructions):

Addition Subtraction

s¢xty d<—x—y

¢« (s ®xDy) & 0x00010000 b« (d @ x D y) & 0x00010000
L& o B d<—d+b

Multibyte absolute value is easily done by complementing and adding 1 to each byte that contains a
negative integer (that is, has its high-order bit on). The following code sets each byte of y equal to the
absolute value of each byte of x (eight instructions):



@ < x & 0x80808080 /{ Isolate signs.

bea7 /{ Integer 1 where x is negative.
me(a—b) | a /{ OxFF where x is negative.
ye(x®m)+b /{ Complement and add 1 where negative.

The third line could as well be m < a +a —b. The addition of b in the fourth line cannot carry
across byte boundaries, because the quantity x ® m has a high-order 0 in each byte.

2—-19 Doz, Max, Min

The “doz” function is “difference or zero,” defined as follows:

Signed Unsigned
2 - = T Wy
d(_)?_(x!'}T) = X—=J). X=Y), dGEU{x., _]') L X—=Y, X ;}T?"l M
0. x<y. 0, x<y.

It has been called “first grade subtraction” because the result is 0 if you try to take away too much.? It
implemented as a computer instruction, perhaps its most important use is to implement the max(x, y)
and min(x, y) functions (in both signed and unsigned forms) in just two simple instructions, as will be
seen. Implementing max(x, y) and min(x, y) in hardware is difficult because the machine would need
paths from the output ports of the register file back to an input port, bypassing the adder. These paths
are not normally present. If supplied, they would be in a region that’s often crowded with wiring for
register bypasses. The situation is illustrated in Figure 2—3. The adder is used (by the instruction) to
do the subtractionx —y. The high-order bits of the result of the subtraction (sign bit and carries, as
described on page 27) define whether x >y or x <y The comparison result is fed to a multiplexor
(MUX) that selects either x or y as the result to write into the target register. These paths, from
register file outputs x and y to the multiplexor, are not normally present and would have little use. The
difference or zero instructions can be implemented without these paths because it is the output of the
adder (or 0) that 1s fed back to the register file.

Register File

L J

=
=
i
A A

FIGURE 2-3. Imple menting max(x, y) and min(x, y).



Using difference or zero, max(x, y) and min(x, y) can be implemented in two instructions as
follows:

Signed Unsigned
max(x, y) = y +doz(x, y) maxu(x, y) = y + dozu(x, y)
min(x, y) = x —doz(x, y) minu(x, ¥) = x —dozu(x, y)

In the signed case, the result of the difference or zero instruction can be negative. This happens if
overflow occurs in the subtraction. Overflow should be ignored; the addition of y or subtraction from
x will overflow again, and the result will be correct. When doz(x, y) is negative, it is actually the
correct difference if it is interpreted as an unsigned integer.

Suppose your computer does not have the difference or zero instructions, but you want to code
doz(x, y), max(x, y), and so forth, in an efficient branch-free way. In the next few paragraphs we show
how these functions might be coded if your machine has the conditional move instructions,
comparison predicates, efficient access to the carry bit, or none of these.

If your machine has the conditional move instructions, it can get doz(x, y) in three instructions, and

destructive? max(x, y) and min(x, y) in two instructions. For example, on the full RISC, z < doz(x, )
can be calculated as follows (r0 is a permanent zero register):

Click here to view code image

sub

Z,%X,Y Set z = x - vy.
cmplt t,x,y Set t =1 if x < y, else 0.
movne z,t,r0 Set z = 0 if x < vy.

Also on the full RISC, x <— max(x, y) can be calculated as follows:

Click here to view code image

1 if x < vy, else O.

cmplt t,
b4 y if x < y.

Y Set t
movne y

Set x

The min function, and the unsigned counterparts, are obtained by changing the comparison conditions.

These functions can be computed in four or five instructions using comparison predicates (three or
four if the comparison predicates give a result of —1 for “true”):

doz(x,y) = (x—p) & —(x=y)
max(x, y) = y + doz(x, y)
= ((x@y)&—(x2y) Dy
min(x, y) = x—doz(x, y)
= ((x@y)&—(x=y)) Dy
On some machines, the carry bit may be a useful aid to computing the unsigned versions of these

functions. Let carry(x — y) denote the bit that comes out of the adder for the operation x+ j + I, moved
to a GPR. Thus, carry(x —y) = 1 iff x > y. Then we have



dozu(x, y) = ((x —y) & ~(carry(x - y)—1))
maxu(x, y) = x—((x—y) & (carry(x - y) - 1))
minu(x, y) = y +((x-y) & (carry(x —y)—1))
On most machines that have a subtract that generates a carry or borrow, and another form of
subtract that uses that carry or borrow as an input, the expression carry(x —y) — 1 can be computed in

one more instruction after the subtraction of y from x. For example, on the Intel x86 machines, minu(x,
y) can be computed in four instructions as follows:

Click here to view code image

sub eax,ecx ; Inputs x and y are in eax and ecx resp.
sbb edx, edx ; edx = 0 if x >= vy, else -1.

and eax,edx ; 0 if x >= vy, else x - y.

add eax,ecx ; Add y, giving y if x >= y, else x.

In this way, all three of the functions can be computed in four instructions (three instructions for
dozu(x, y) if the machine has and with complement).

A method that applies to nearly any RISC is to use one of the above expressions that employ a
comparison predicate, and to substitute for the predicate one of the expressions given on page 23. For
example:

dex—y
doz(x,y) = d& [(d=((x @ y) & (d ® x))) = 31]
dozu(x,y) = d& -[((—x & y) | (x=y) & d)) = 31]

These require from seven to ten instructions, depending on the computer’s instruction set, plus one
more to get max or min.

These operations can be done in four branch-free basic RISC instructions if it is known that =231 <

x —y <231 — 1 (that is an expression in ordinary arithmetic, not computer arithmetic). The same code
works for both signed and unsigned integers, with the same restriction onx and y. A sufficient

condition for these formulas to be valid is that, for signed integers, 230 <x, y <239 — 1, and for
unsigned integers, 0 < x,y <231 —1.

doz(x, y) = dozu(x,y) = (x—p) & =((x—y) = 31)
max(x, y) = maxu(x,y) = x—((x—p) & (x—y) = 31))
min(x, y) = minu(x, ) = y+ ((x—p) & ((x—y) = 31))

Some uses of the difference or zero instruction are given here. In these, the result of doz(x, y) must
be interpreted as an unsigned integer.

1. It directly implements the Fortran IDIM function.
2. To compute the absolute value of a difference [Knu7]:

|lx —y| = doz(x, y) +doz(y,x), signed arguments,
= dozu(x, y) + dozu(y, x). unsigned arguments.

Corollary: x| =doz(x, 0) + doz(0, x) (other three-instruction solutions are given on page 18).



3. To clamp the upper limit of the true sum of unsigned integers x and y to the maximum positive
number (232 — 1) [Knu7]:

—dozu(—x, y).
4. Some comparison predicates (four instructions each):

I

x>y = (doz(x,y) | —doz(x,y)) = 31,

x <y = (dozu(x,y) | —dozu(x, y)) = 31.
5. The carry bit from the addition x + y (five instructions):

carry(x +y) = x £ —y = (dozu(x, —y) | —dozu(x, —y)) = 31.
The expression doz(x, —y), with the result interpreted as an unsigned integer, is in most cases the

true sumx +y with the lower limit clamped at 0. However, it fails if y is the maximum negative
number.

The IBM RS/6000 computer, and its predecessor the 801, have the signed version of difference or
zero. Knuth’s MMIX computer [ Knu7] has the unsigned version (including some varieties that operate
on parts of words in parallel). This raises the question of how to get the signed version from the
unsigned version, and vice versa. This can be done as follows (where the additions and subtractions
simply complement the sign bit):

doz(x,p) = dozu(x + 231, y + 231,
dozu(x,y) = doz(x — 231, y — 231).

Some other identities that may be useful are:

doz(—x, ) = doz(y, x),
dozu(—x, —y) = dozu(y, x).

The relation doz(—x, —y) = doz(y, x) fails if either x or y, but not both, is the maximum negative
number.

2-20 Exchanging Registers
A very old trick is exchanging the contents of two registers without using a third [IBM]:
X—Xx9y

yeyox
X—Xx9y
This works well on a two-address machine. The trick also works if ® is replaced by the = logical
operation (complement of exc/usive or) and can be made to work in various ways with add’s and
subtract’s:
Xex+y Xe—x—y Xe—y-—x
yeex—y yeytx yeey—x
X—X—Vy X—y—X X=Xty



Unfortunately, each of these has an instruction that is unsuitable for a two-address machine, unless the
machine has “reverse subtract.”

This little trick can actually be useful in the application of double buffering, in which two pointers
are swapped. The first instruction can be factored out of the loop in which the swap is done (although
this negates the advantage of saving a register):

Outside the loop: t« x@ y
Inside the loop: x«—x@ ¢
ye—yot

Exchanging Corresponding Fields of Registers

The problem here is to exchange the contents of two registers x and y wherever a mask bit m; =1, and
to leave x and y unaltered wherever m; = 0. By “corresponding” fields, we mean that no shifting is
required. The 1-bits of m need not be contiguous. The straightforward method is as follows:

X (x&m) | (y & m)

ye—(p&m)| (x & m)

XX
By using “temporaries” for the four and expressions, this can be seen to require seven instructions,
assuming that either m or j; can be loaded with a single instruction and the machine has and not as a

single instruction. If the machine is capable of executing the four (independent) and expressions in
parallel, the execution time is only three cycles.

A method that is probably better (five instructions, but four cycles on a machine with unlimited
instruction-level parallelism) is shown in column (a) below. It is suggested by the “three exclusive
or” code for exchanging registers.

(a) (b) (c)

X< XDy X¢X=y te—(xDy)&m
yey®(x&m) y<y=(x | m) X<x®Dt
Xex®Dy XeXx=y y—yot

The steps in column (b) do the same exchange as that of column (a), but column (b) 1s useful if m does
not fit in an immediate field, but 7 does, and the machine has the equivalence instruction.

Still another method is shown in column (c) above [GLS1]. It also takes five instructions (again
assuming one instruction must be used to load m into a register), but executes in only three cycles on a
machine with sufficient instruction-level parallelism.

Exchanging Two Fields of the Same Register

Assume a register x has two fields (of the same length) that are to be swapped, without altering other
bits in the register. That is, the object is to swap fields B and D without altering fields 4, C, and E, in
the computer word illustrated below. The fields are separated by a shift distance £.



—k
X A B C D E

L'

Straightforward code would shift D and B to their new positions, and combine the words with and
and or operations, as follows:

f = (x&m) <k
t, = (x> k)& m

X' =(x&m') |t | 4
Here, m is a mask with 1’s in field D (and 0’s elsewhere), and m' is a mask with 1’s in fields 4, C,
and E. This code requires 11 instructions and six cycles on a machine with unlimited instruction-level
parallelism, allowing for four instructions to generate the two masks.
A method that requires only eight instructions and executes in five cycles, under the same

assumptions, is shown below [GLS1]. It 1s similar to the code in column (c) on page 46 for
interchanging corresponding fields of two registers. Again, m is a mask that isolates field D.

= [x®(xL k)] &m

rq = I] "‘3‘:: JE-_

X' =x®t D,
The idea is that #; contains B ® D in position D (and 0’s elsewhere), and #, contains B © D in position

B. This code, and the straightforward code given earlier, work correctly if B and D are “split
fields”—that is, if the 1-bits of mask m are not contiguous.

Conditional Exchange

The exchange methods of the preceding two sections, which are based on exclusive or, degenerate
into no-operations if the mask m is 0. Hence, they can perform an exchange of entire registers, or of
corresponding fields of two registers, or of two fields of the same register, if m is set to all 1’s if
some condition ¢ is true, and to all 0’s if ¢ is false. This gives branch-free code if m can be set up
without branching.

2-21 Alternating among Two or More Values

Suppose a variable x can have only two possible values a and b, and you wish to assign to x the value
other than its current one, and you wish your code to be independent of the values of a and b. For
example, in a compiler x might be an opcode that 1s known to be either branch true or branch false,
and whichever it is, you want to switch it to the other. The values of the opcodes branch true and
branch false are arbitrary, probably defined by a C #derine Or enun declaration in a header file.

The straightforward code to do the switch is

Click here to view code image

if (x == a) x = b;
else x = a;

or, as is often seen in C programs,



Click here to view code image

X =x ==a ? b : a;

A far better (or at least more efficient) way to code it is either

X«—at+hbh—-x, or
X—a®bhdx.

If @ and b are constants, these require only one or two basic RISC instructions. Of course, overflow
in calculating @ + b can be ignored.

This raises the question: Is there some particularly efficient way to cycle among three or more
values? That is, given three arbitrary but distinct constants @, b, and ¢, we seek an easy-to-evaluate
function f that satisfies

fla) = b,
flb) = ¢. and
fle) = a.

It is perhaps interesting to note that there is always a polynomial for such a function. For the case
of three constants,

_(x—a)x=b)  (x—b)x—-c), , (x—c)x—a)
= ety @By T b=t)ti=s) &
(The 1dea is that if x = a, the first and last terms vanish, and the middle term simplifies to b, and so
on.) This requires 14 arithmetic operations to evaluate, and for arbitrary a, b, and ¢, the intermediate
results exceed the computer’s word size. But it is just a quadratic; if written in the usual form for a

polynomial and evaluated using Horner’s rule,? it would require only five arithmetic operations (four
for a quadratic with integer coefficients, plus one for a final division). Rearranging Equation (5)
accordingly gives

o |

I a0
+[(a-b)b2+(b-c)c? +(c—a)a?]x

+ [(a—b)a?h + (b —c)b?c + (c—a)ac?]}.

This is getting too complicated to be interesting, or practical.

{[(a—b)a+(b-c)b+(c—a)c]x?

Another method, similar to Equation (5) in that just one of the three terms survives, is

fx)=((—(x=¢)) &a) + (~(x=a)) & b) + ((—(x = b)) & ¢).

This takes 11 instructions if the machine has the equal predicate, not counting loads of constants.
Because the two addition operations are combining two 0 values with a nonzero, they can be replaced
with or or exclusive or operations.

The formula can be simplified by precalculating @ — ¢ and b — ¢, and then using [ GLS1]:
fx)=((—(x=¢c)) &(a-c)) +(((x=a)) &(b—c)) + ¢, or
fx)=(((x=c)) &(a®c)®((~(x=a)) &(b®c)) ®c.



Each of these operations takes eight instructions, but on most machines these are probably no better
than the straightforward C code shown below, which executes in four to six instructions for small a, o,
and c.

Click here to view code image

if (x == a) x = b;
else 1f (x == b) x = c;
else x = ay;

Pursuing this matter, there is an ingenious branch-free method of cycling among three values on
machines that do not have comparison predicate instructions [GLS1]. It executes in eight instructions
on most machines.

Because a, b, and ¢ are distinct, there are two bit positions, n; and n,, where the bits of @, b, and ¢

are not all the same, and where the “odd one out” (the one whose bit differs in that position from the
other two) is different in positions 7 and n,. This is illustrated below for the values 21, 31, and 20,

shown in binary.

1 0101 c

| 1 O | a

1 0100 b
n, ",

Without loss of generality, rename a, b, and ¢ so that @ has the odd one out in position n; and b has
the odd one out in position n,, as shown above. Then there are two possibilities for the values of the
bits at position n, namely (a,,b,,¢c, ) =(0, 1, 1) or (1, 0, 0). Similarly, there are two possibilities
c,)=1(0,1,0)o0r (1,0, 1). This makes four cases in all,

and formulas for each of these cases are shown below.

for the bits at position n,, namely (a,,, b, , ¢,,

Case 1. (a,,b,,¢,) =(0,1,1), (a,,5,,¢,) =, 1,0):
flx) = X, #(a—b'}+xﬂz* (c—a)+b
Case2. (a,.b,.c,) =(0.1.1). (a,.b, . c,) =(1.0.1):
flx) = Xy =+={ﬂ—b)+xﬂz=+={a—f)+(b+r:—a}
Case 3. (a,,,b,.¢,) =(1.0.0). (a,.b,.c,) =(0.1.0):
Mx) = x, «(b—a)+x, x(c—a)ta
Case 4. (a,,b,,c,) =(1,0,0), (a,,b,,c,) =(1,0,1):

fx)y =x, x(b—a)+x, x(a—c)+tc

In these formulas, the left operand of each multiplication is a single bit. A multiplication by 0 or 1
can be converted into an and with a value of 0 or all 1’s. Thus, the formulas can be rewritten as



illustrated below for the first formula.

fx)=((x =< (31-n))) = 3D)&@—-b) +((x < (31-n,)) = 31)&(c—a) + b
Because all variables except x are constants, this can be evaluated in eight instructions on the basic
RISC. Here again, the additions and subtractions can be replaced with exclusive or.

This idea can be extended to cycling among four or more constants. The essence of the idea is to
find bit positions ny, n,, ..., at which the bits uniquely identify the constants. For four constants, three

bit positions always suffice. Then (for four constants) solve the following equation for s, ¢, u, and v
(that 1s, solve the system of four linear equations in which f(x) is a, b, ¢, or d, and the coefficients Xp,

are 0 or 1):

Sx)=x,s+x,t+x,utvy

If the four constants are uniquely identified by only two bit positions, the equation to solve is

Sx)=x, s+x,t+x, x, utv.

2-22 A Boolean Decomposition Formula

In this section, we have a look at the minimum number of binary Boolean operations, or instructions,
that suffice to implement any Boolean function of three, four, or five variables. By a “Boolean
function” we mean a Boolean-valued function of Boolean arguments.

Our notation for Boolean algebra uses “+” for or, juxtaposition for and, ® for exclusive or, and
either an overbar or a prefix — for not. These operators can be applied to single-bit operands or
“bitwise” to computer words. Our main result is the following theorem:

THEOREM. If f(x, y, z) is a Boolean function of three variables, then it can be decomposed into
the form g(x, y) © zh(x, y), where g and h are Boolean functions of two variables.C

Proof [Ditlow]. f(x, y, z) can be expressed as a sum of minterms, and then = and z can be factored
out of their terms, giving

Ax,3,2) = Zfolx,y) + 2f1(x, p).
Because the operands to “+” cannot both be 1, the or can be replaced with exclusive or, giving
flx,y,2) = 2fo(x, ») @ =f (x, y)
= (1D 2)fo(x,y) ® zfi(x,¥)
= Jo(x,») @ zf,(x, y) © =f,(x, y)
= Jo(x,¥) @ z(fo(x, ¥) B f,(x, ¥)),

where we have twice used the identity (a ® b) ¢ = ac ® bc.
This 1s in the required form with g(x, y) =fy(x, ) and A(x, y) =fy(x, ¥) @fi(x, »).fo(x, »),
incidentally, 1s f(x, y, z) withz =0, and f{(x, y) 1s f{x, , z) withz = 1.

COROLLARY. If a computers instruction set includes an instruction for each of the 16 Boolean
functions of two variables, then any Boolean function of three variables can be implemented with
four (or fewer) instructions.



One instruction implements g(x, y), another implements 4(x, y), and these are combined with and and
exclusive or.

As an example, consider the Boolean function that is 1 if exactly two of x, y, and z are 1:

f(x, 3, 2) = XYE +x¥z + Xz,
Before proceeding, the interested reader might like to try to implement f with four instructions,
without using the theorem.

From the proof of the theorem,

f(x,3,2) = fo(x,3) ® z(fp(x, ¥) @ f1(x, )
= xy @ :z(xy @ (xy +xy))
=z elx+y),
which is four instructions.
Clearly, the theorem can be extended to functions of four or more variables. That is, any Boolean
function f(x{, x,, ..., x,) can be decomposed into the form g(x;, x,, ..., x,_1) ©x,h(x{, X9, ..., X,_1)-
Thus, a function of four variables can be decomposed as follows:

flw, x,y,2) = g(w,x,y) ® zh(w, x, y), where
g(w,x,y) = g,(w,x) @ yh,(w,x) and

h(w,x,y) = g,(w,x) ® yh,(w, x).
This shows that a computer that has an instruction for each of the 16 binary Boolean functions can

implement any function of four variables with ten instructions. Similarly, any function of five
variables can be implemented with 22 instructions.

However, it is possible to do much better. For functions of four or more variables there is
probably no simple plug-in equation like the theorem gives, but exhaustive computer searches have
been done. The results are that any Boolean function of four variables can be implemented with seven
binary Boolean instructions, and any such function of five variables can be implemented with 12 such
instructions [Knmu4, 7.1.2].

In the case of five variables, only 1920 of the 2% = 4,294,967,296 functions require 12
instructions, and these 1920 functions are all essentially the same function. The variations are
obtained by permuting the arguments, replacing some arguments with their complements, or
complementing the value of the function.

2-23 Implementing Instructions for All 16 Binary Boolean Operations

The instruction sets of some computers include all 16 binary Boolean operations. Many of the
instructions are useless in that their function can be accomplished with another instruction. For
example, the function f(x, y) = 0 simply clears a register, and most computers have a variety of ways
to do that. Nevertheless, one reason a computer designer might choose to implement all 16 is that
there 1s a simple and quite regular circuit for doing it.

Refer to Table 2—1 on page 17, which shows all 16 binary Boolean functions. To implement these
functions as instructions, choose four of the opcode bits to be the same as the function values shown
in the table. Denoting these opcode bits by ¢, ¢, ¢y, and c3, reading from the bottom up in the table,



and the input registers by x and y, the circuit for implementing all 16 binary Boolean operations is
described by the logic expression

CoXy T C XY + Xy + 3 XY,
For example, with ¢y = ¢; = ¢, = ¢3 = 0, the instruction computes the zero function, f(x, y) = 0. With ¢,
= 1 and the other opcode bits 0 it 1s the and instruction. Withcy =c3 = 0 andcy =c, = 1 1t is
exclusive or, and so forth.

This can be implemented with n 4:1 MUXs, where 7 is the word size of the machine. The data bits
of x and y are the select lines, and the four opcode bits are the data inputs to each MUX. The MUX is
a standard building block in today’s technology, and it is usually a very fast circuit. It is illustrated
below.

A
‘I MUX " L output
Cy—>
€3—* select
X ¥

The function of the circuit is to select ¢, ¢y, ¢, or c3 to be the output, depending on whether x and y
are 00, 01, 10, or 11, respectively. It is like a four-position rotary switch.

Elegant as this is, it is somewhat expensive in opcode points, using 16 of them. There are a number
of ways to implement all 16 Boolean operations using only eight opcode points, at the expense of less
regular logic. One such scheme is illustrated in Table 2-3.

TABLE 2—3. EIGHT SUFFICIENT BOOLEAN INSTRUCTIONS

Function Instruction

Values Formula Mnemonic (Name)
0001 Xy and
0010 xy andc (and with complement)
0110 x@y xor (exclusive or)
0111 Xty ar
1110 ,r_v nand (negative and)
1101 XP,orX +y cor (complement and or)
1001 x@y,orx=y | eqvlequivalence)
1000 x+y nor (negative or)

The eight operations not shown in the table can be done with the eight instructions shown, by
interchanging the inputs or by having both register fields of the instruction refer to the same register.
See exercise 13.

IBM’s POWER architecture uses this scheme, with the minor difference that POWER has or with



complement rather than complement and or. The scheme shown in Table 2-3 allows the last four
instructions to be implemented by complementing the result of the first four instructions, respectively.

Historical Notes

The algebra of logic expounded in George Boole’s An Investigation of the Laws of Thought (1854)2
1s somewhat different from what we know today as “Boolean algebra.” Boole used the integers 1 and
0 to represent truth and falsity, respectively, and he showed how they could be manipulated with the
methods of ordinary numerical algebra to formalize natural language statements involving “and,”
“or,” and “except.” He also used ordinary algebra to formalize statements in set theory involving
intersection, union of disjoint sets, and complementation. He also formalized statements in probability
theory, in which the variables take on real number values from 0 to 1. The work often deals with
questions of philosophy, religion, and law.

Boole is regarded as a great thinker about logic because he formalized it, allowing complex
statements to be manipulated mechanically and flawlessly with the familiar methods of ordinary
algebra.

Skipping ahead in history, there are a few programming languages that include all 16 Boolean
operations. IBM’s PL/I (ca. 1966) includes a built-in function named BOOL. In BOOL(x, y, z),z is a
bit string of length four (or converted to that if necessary), and x and y are bit strings of equal length
(or converted to that if necessary). Argument z specifies the Boolean operation to be performed on x
and y. Binary 0000 is the zero function, 0001 is xy, 0010 is xy, and so forth.

Another such language 1s Basic for the Wang System 2200B computer (ca. 1974), which provides a
version of BOOL that operates on character strings rather than on bit strings or integers [ Neum].

Still another such language is MIT PDP-6 Lisp, later called MacLisp [GLS1].

Exercises

1. David de Kloet suggests the following code for the snoob function, for x # 0, where the final
assignment to y is the result:

yext+(x & —x)

X—x &y

while((x & 1) =0) x ¢~ x = 1

X X 1“-':“} |

Yy | x
This is essentially the same as Gosper’s code (page 15), except the right shift is done with a
while-1oop rather than with a divide instruction. Because division is usually costly in time, this
might be competitive with Gosper’s code if the while-loop 1s not executed too many times. Let
n be the length of the bit strings x and y, k£ the number of 1-bits in the strings, and assume the

code is executed for all values of x that have exactly & 1-bits. Then for each invocation of the
function, how many times, on average, will the body of the while-loop be executed?

2. The text mentions that a left shift by a variable amount 1s not right-to-left computable. Consider
the functionx << (x & 1) [Knu8]. This 1s a left shift by a variable amount, but it can be



computed by

x+(x&1)*x, or
x+(x & (—(x &1))),

which are all right-to-left computable operations. What is going on here? Can you think of
another such function?

3. Derive Dietz’s formula for the average of two unsigned integers,

(x&p)+((x@y)=1).
4. Give an overflow-free method for computing the average of four unsigned integers, | (a +b +¢
+d)/4 .
5. Many of the comparison predicates shown on page 23 can be simplified substantially if bit 31 of

either x or y is known. Show how the seven-instruction expression for x <y can be simplified to
three basic RISC, non-comparison, instructions if y3; = 0.

6. Show that if two numbers, possibly distinct, are added with “end-around carry,” the addition of
the carry bit cannot generate another carry out of the high-order position.

7. Show how end-around carry can be used to do addition if negative numbers are represented in
one’s-complement notation. What is the maximum number of bit positions that a carry (from any
bit position) might be propagated through?

8. Show that the MUX operation, (x & m) | (y & ~m), can be done in three instructions on the
basic RISC (which does not have the and with complement instruction).

9. Show how to implement x © y in four instructions with and-or-not logic.

10. Given a 32-bit word x and two integer variables i and j (in registers), show code to copy the bit

of x at position i to positionj. The values of i and j have no relation, but assume that 0 <i, j <
31.

11. How many binary Boolean instructions are sufficient to evaluate any n-variable Boolean
function if it 1s decomposed recursively by the method of the theorem?

12. Show that alternative decompositions of Boolean functions of three variables are

(a) f(x, v, z) = g(x, ¥) @ =h(x, y) (the “negative Davio decomposition”), and
(b) fx, y, 2) = g(x, y) © (z + A (x, y)).
13. It is mentioned in the text that all 16 binary Boolean operations can be done with the eight

instructions shown in Table 23, by interchanging the inputs or by having both register fields of
the instruction refer to the same register. Show how to do this.

14. Suppose you are not concerned about the six Boolean functions that are really constants or unary
functions, namely f(x, y) =0, 1, x, y, 3, and j, but you want your instruction set to compute the
other ten functions with one instruction. Can this be done with fewer than eight binary Boolean
instruction types (opcodes)?

15. Exercise 13 shows that eight instruction types suffice to compute any of the 16 two-operand
Boolean operations with one R-R (register-register) instruction. Show that six instruction types
suffice in the case of R-I (register-immediate) instructions. With R-I instructions, the input



operands cannot be interchanged or equated, but the second input operand (the immediate field)
can be complemented or, in fact, set to any value at no cost in execution time. Assume for
simplicity that the immediate fields are the same length as the general purpose registers.

16. Show that not all Boolean functions of three variables can be implemented with three binary
logical instructions.



Chapter 3. Power-of-2 Boundaries

3—1 Rounding Up/Down to a Multiple of a Known Power of 2

Rounding an unsigned integer x down to, for example, the next smaller multiple of 8 is trivial: x & —8
does it. An alternative is (x = 3) =< 3. These work for signed integers as well, provided “round
down” means to round in the negative direction (e.g., (—37) & (—8) = —40).

Rounding up is almost as easy. For example, an unsigned integer x can be rounded up to the next
greater multiple of 8 with either of

(x+7)&-8. or
x+t(—x&7)
These expressions are correct for signed integers as well, provided “round up” means to round in the

positive direction. The second term of the second expression is useful if you want to know how much
you must add to x to make it a multiple of 8 [Gold].

To round a signed integer to the nearest multiple of 8 toward 0, you can combine the two
expressions above in an obvious way:

te(x=31)&T7;

(x+t)& -8
An alternative for the first line is £« (x = 2)= 29, which is useful if the machine lacks and
immediate, or if the constant is too large for its immediate field.

Sometimes the rounding factor is given as the log, of the alignment amount (e.g., a value of 3 means

to round to a multiple of 8). Inthis case, code such as the following can be used, where k =
log,(alignment amount):

round down: x & ((-1)=k)
(x= k) <k
round up: te—(1<<k)-1; (x+1)& —t

fe—(-1)=<k: (x—-t-1)&t¢
3—2 Rounding Up/Down to the Next Power of 2

We define two functions that are similar to floor and ceiling, but which are directed roundings to the
closest integral power of 2, rather than to the closest integer. Mathematically, they are defined by

undefined. x < 0. undefined. x < ().
flp2(x) = 10, 3 =] clp2(x) = 40, x =0,
olleg2x|  otherwise; oflogx]  otherwise.

The initial letters of the function names are intended to suggest “floor” and “ceiling.” Thus, flp2(x) is
the greatest power of 2 that is <x, and clp2(x) is the least power of 2 that is >x. These definitions



make sense even when x i1s not an integer (e.g., flp2(0.1) = 0.0625). The functions satisfy several
relations analogous to those involving floor and ceiling, such as those shown below, where 7z is an
integer.

|x] = [x7] iff x isan integer flp2(x) = clp2(x) iff x is a power of 2 oris 0
|lx+n] = |x]+n flp2(27x) = 2"lp2(x)
[x] = =] =] clp2(x) = 1/flp2(1/x), x=#0

Computationally, we deal only with the case in which x is an integer, and we take it to be unsigned,
so the functions are well defined for all x. We require the value computed to be the arithmetically

correct value modulo 232 (that is, we take clp2(x) to be 0 for x >231). The functions are tabulated
below for a few values of x.

X fIp2(x) clp2(x)
0 0 0
1 1 I
2 2 2
3 4 4
4 4 4
5 4 8
231 _ | 930 231
231 731 931
231 4 231 0
232.-. ] 231 0

Functions flp2 and clp2 are connected by the relations shown below. These can be used to compute
one from the other, subject to the indicated restrictions.

clp2(x) = 2flp2(x-1), b ot 5 [P
= flp2(2x - 1), 1 <x <231

flp2(x) = clp2(x£2+1), x=0,

= clp2(x +1) %2, x<231,
The round-up and round-down functions can be computed quite easily with the number of leading

zeros instruction, as shown below. However, for these relations to hold for x =0 and x > 231, the

computer must have its shift instructions defined to produce 0 for shift amounts of —1, 32, and 63.
Many machines (e.g., PowerPC) have “mod-64" shifts, which do this. In the case of —1, it is adequate
if the machine shifts in the opposite direction (that is, a shift left of —1 becomes a shift right of 1).



flp2(x) = 1 == (31 —nlz(x))

1 << (nlz(x) @ 31)

0x80000000 == nlz(x)
1 << (32 —nlz(x—1))

clp2(x)

0x80000000 = (nlz(x —1)—1)
Rounding Down

Figure 3—1 illustrates a branch-free algorithm that might be useful if number of leading zeros is not
available. This algorithm is based on right-propagating the leftmost 1-bit, and executes in 12
instructions.

Click here to view code image

¥ T

X (x >> 1);
X >> 2);
X >> 4);
X >> 8);
X x >> 16);
return x - (x >> 1);

| | R |
XoXoX X

XXX X

unsigned flp2 (unsigned x) {
|
|
|
|
|

(
(
(
(

FIGURE 3-1. Greatest power of 2 less than or equal to x, branch free.

Figure 3—2 shows two simple loops that compute the same function. All variables are unsigned
integers. The loop on the right keeps turning off the rightmost 1-bit of x until x = 0, and then returns
the previous value of x.

Click here to view code image

y = 0x80000000; do {
while (y > x) y = X;
y =y > 1; X =X & (x - 1);
return y; } while(x !'= 0);
return y;

FIGURE 3-2. Greatest power of 2 less than or equal to x, simple loops.
The loop on the left executes in 4nlz(x) + 3 instructions. The loop on the right, for x # 0, executes
in 4 pop(x) instructions,! if the comparison to 0 is zero-cost.
Rounding Up

The right-propagation trick yields a good algorithm for rounding up to the next power of 2. This
algorithm, shown in Figure 3-3, is branch free and runs in 12 instructions.

Click here to view code image

I 4

unsigned clp2 (unsigned x) {
Xx =x - 1;



>>
>>
>>
>>
X >>
return x + 1;

KoM X X X
[t
XXX X
= oo s N
O — — — —

Py

HXoX X X X

FIGURE 3-3. Least power of 2 greater than or equal to x.

An attempt to compute this with the obvious loop does not work out very well:

Click here to view code image

y = 1;

while (y < x) // Unsigned comparison.
y = 2%y;
return y;
This code returns 1 for x = 0, which is probably not what you want, loops forever for x > 23!, and
executes in 4n + 3 instructions, where 7 is the power of 2 of the returned integer. Thus, it is slower
than the branch-free code, in terms of instructions executed, for n> 3 (x> 8).

3-3 Detecting a Power-of-2 Boundary Crossing

Assume memory is divided into blocks that are a power of 2 in size, starting at address 0. The blocks
may be words, doublewords, pages, and so on. Then, given a starting address a and a length /, we
wish to determine whether or not the address range froma toa +1[ —1,/ > 2, crosses a block
boundary. The quantities @ and / are unsigned and any values that fit in a register are possible.

If/ =0 or 1, a boundary crossing does not occur, regardless of a. If/ exceeds the block size, a
boundary crossing does occur, regardless of a. For very large values of / (wraparound is possible), a
boundary crossing can occur even if the first and last bytes of the address range are in the same block.

There is a surprisingly concise way to detect boundary crossings on the IBM System/370 [CJS].
This method is illustrated below for a block size of 4096 bytes (a common page size).

Click here to view code image

O RA,=A(-4096)
ALR RA,RL
BO CROSSES

The first instruction forms the logical or of RA (which contains the starting address a) and the number
OxFFFFF000. The second instruction adds in the length and sets the machine’s 2-bit condition code.
For the add logical instruction, the first bit of the condition code is set to 1 if a carry occurred, and
the second bit 1s set to 1 if the 32-bit register result is nonzero. The last instruction branches if both
bits are set. At the branch target, RA will contain the length that extends beyond the first page (this is
an extra feature that was not asked for).

If, for example, a = 0 and / = 4096, a carry occurs, but the register result is 0, so the program
properly does not branch to label CROSSES.

Let us see how this method can be adapted to RISC machines, which generally do not have branch



on carry and register result nonzero . Using a block size of 8 for notational simplicity, the method of
[CJS] branches to CROSSES if a carry occurred ((a | —8) + /> 23?) and the register result is nonzero
((a|-8) + [ # 23?). Thus, it is equivalent to the predicate

(a|-8)+1>2%

This in turn is equivalent to getting a carry in the final addition in evaluating ((a | —8) — 1) + /. If the
machine has branch on carry, this can be used directly, giving a solution in about five instructions,
counting a load of the constant —8.

If the machine does not have branch on carry, we can use the fact that carry occurs inx +y iff
—x £ y (see “Unsigned Add/Subtract” on page 31) to obtain the expression

—|((vﬂ' | _8}—I)E’ f.
Using various identities such as —(x —1) = —x gives the following equivalent expressions for the
“boundary crossed” predicate:

—(a | -8) %1

These can be evaluated in five or six instructions on most RISC computers, counting the final
conditional branch.

Using another tack, clearly an 8-byte boundary is crossed iff
(a&T)+1-1>8.

This cannot be directly evaluated because of the possibility of overflow (which occurs 1f/ is very
large), but it is easily rearranged to 8 — (@ & 7) <1, which can be directly evaluated on the computer
(no part of it overflows). This gives the expression

8- (a&7) 1,
which can be evaluated in five instructions on most RISCs (four if it has subtract from immediate). 1t
a boundary crossing occurs, the length that extends beyond the first block is given byl — (8 — (a &
7)), which can be calculated with one additional instruction (subtract).

This formula can be easily understood from the figure below [Kumar], which illustrates that a & 7
is the offset of @ in its block, and thus 8 — (@ & 7) is the space remaining in the block.

- h -

LR LN

*—a&?—v—T
a

Exercises

1. Show how to round an unsigned integer to the nearest multiple of 8, with the halfway case (a)
rounding up, (b) rounding down, and (c) rounding up or down, whichever makes the next bit to



the left a zero (““‘unbiased” rounding).

2. Show how to round an unsigned integer to the nearest multiple of 10, with the halfway case (a)
rounding up, (b) rounding down, and (¢) rounding up or down, whichever results in an even
multiple of 10. Feel free to use division, remaindering, and multiplication instructions, and
don’t be concerned about values very close to the largest unsigned integer.

3. Code a function in C that does an “unaligned load.” The function is given an address a and it
loads the four bytes from addresses a througha + 3 into a 32-bit GPR, as if those four bytes
contained an integer. Parameter a addresses the low-order byte (that is, the machine is little-
endian). The function should be branch free, it should execute at most two load instructions and,
if a 1s full-word aligned, it must not attempt to load from address a + 4, because that may be in a
read-protected block.



Chapter 4. Arithmetic Bounds

4—1 Checking Bounds of Integers

By “bounds checking” we mean to verify that an integer x is within two bounds a and »—that is, that
a<x<b.

We first assume that all quantities are signed integers.

An important application is the checking of array indexes. For example, suppose a one-dimensional
array 4 can be indexed by values from 1 to 10. Then, for a reference A(i), a compiler might generate
code to check that

1<i<10

and to branch or trap if this is not the case. In this section we show that this check can be done with a
single comparison, by performing the equivalent check [PLS8]:

i-1%9.
This is probably better code, because it involves only one compare-branch (or compare-trap), and
because the quantity i— 1 is probably needed anyway for the array addressing calculations.

Does the implementation

asx<b=>x-a<b-a
always work, even if overflow may occur in the subtractions? It does, provided we somehow know
that a < b. In the case of array bounds checking, language rules may require that an array not have a
number of elements (or number of elements along any axis) that are 0 or negative, and this rule can be
verified at compile time or, for dynamic extents, at array allocation time. In such an environment, the
transformation above is correct, as we will now show.

It is convenient to use a lemma, which is good to know in its own right.

LEMMA. If a and b are signed integers and a <b, then the computed value b —a correctly
represents the arithmetic value b — a, if the computed value is interpreted as unsigned.

Proof. (Assume a 32-bit machine.) Because a < b, the true difference b — a is in the range 0 to (23!
— 1) — (—231) =232 — 1. If the true difference is in the range 0 to 23! — 1, then the machine result is
correct (because the result is representable under signed interpretation), and the sign bit is off. Hence
the machine result is correct under either signed or unsigned interpretation.

If the true difference is in the range 23! to 232 — 1, then the machine result will differ by some
multiple of 232 (because the result is not representable under signed interpretation). This brings the
result (under signed interpretation) to the range —23! to —1. The machine result is too low by 232, and
the sign bit is on. Reinterpreting the result as unsigned increases it by 232, because the sign bit is
given a weight of + 23! rather than —23!. Hence the reinterpreted result is correct.

The “bounds theorem” is

THEOREM. If a and b are signed integers and a < b, then



as<x<h=x—-a%tb-a. (1)
Proof. We distinguish three cases, based on the value of x. In all cases, by the lemma, since a < b,
the computed value b — a 1s equal to the arithmetic value b — a if b — a is interpreted as unsigned, as it
is in Equation (1).

232

Case 1, x <a: In this case, x — a interpreted as unsigned is x— a + 2°~. Whatever the values of x and

b are (within the range of 32-bit numbers),
x+232>b.
Therefore
x—a+23>pq,
and hence

x—-a>b-a.
In this case, both sides of Equation (1) are false.

Case 2, a <x < b: Then, arithmetically, x —a < b — a. Because a < x, by the lemma x — a equals the
computed value x — a if the latter is interpreted as unsigned. Hence

x—a<bh-a;
that 1s, both sides of Equation (1) are true.

Case 3, x > b: Thenx —a > b — a. Because in this case x > a (because b > a), by the lemma x —a
equals the value of x — a if the latter is interpreted as unsigned. Hence

x—a=b-a;
that 1s, both sides of Equation (1) are false.

The theorem stated above is also true if a and b are unsigned integers. This is because for unsigned
integers the lemma holds trivially, and the above proofis also valid.

Below is a list of similar bounds-checking transformations, with the theorem above stated again.
These all hold for either signed or unsigned interpretations of a, b, and x.

ifg<btheng<x<bhb=x—-asb—-a=>0b-—-x%b—ag

ifa<bthenasx<b=x—-aZb—a 2
ifa<bthena<x<h =b-xZb-a
ifa<bthena<x<bh=x-a-12b-a-1=b-x-1Zb-a-1

In the last rule, b — a — 1 can be replaced with b + —a.

There are some quite different transformations that may be useful when the test is of the form —2/!

<x <21 _ 1. This is a test to see if a signed quantity x can be correctly represented as an n-bit
two’s-complement integer. To illustrate with n = 8, the following tests are equivalent:



a. -128 = x <127
b. x+ 128 £ 255

c. (x>7+1%1
d. x37=x331
e. (x=7)+(x=31)=0

f. (x<24)>24 = x

g. x®(x=31)<127
Equation (b) is simply an application of the preceding material in this section. Equation (c¢) is as
well, after shifting x right seven positions. Equations (c) — (f) and possibly (g) are probably useful
only if the constants in Equations (a) and (b) exceed the size of the immediate fields of the computer’s
compare and add instructions.

Another special case involving powers of 2 is

0<xg2"— 1 (x5n) =0,
or, more generally,

a<x<a+2"-1e((x—a)%n) =0.

4-2 Propagating Bounds through Add’s and Subtract’s

Some optimizing compilers perform “range analysis” of expressions. This is the process of
determining, for each occurrence of an expression in a program, upper and lower bounds on its value.
Although this optimization is not a really big winner, it does permit improvements such as omitting
the range check on a C “switch” statement and omitting some subscript bounds checks that compilers
may provide as a debugging aid.

Suppose we have bounds on two variables x and y as follows, where all quantities are unsigned:

a=x=<h., and
c<y=<d.

Then, how can we compute tight bounds onx + y, x — y, and — x? Arithmetically, of course, a + ¢ <x
+y < b + d; but the point is that the additions may overflow.

(3)

The way to calculate the bounds is expressed in the following;
THEOREM. If a, b, ¢, d, x, and y are unsigned integers and

A<x<

and

i !

|A=
A=

b
ey,
then



0&x+y<2321

if a+c<22—1 and b+d=2%,

at+c<x+ty<b+d otherwise; e
0<x—y<22 -1 jif a-d<0 and b—c=0, 5)
a-d<x-y<b—c otherwise;
0<—x<22-1if a=0 and b#0, ©)

hE-x%-a otherwise.
Inequalities (4) say that the bounds on x + y are “normally” @ + ¢ and b + d, but if the calculation of
a + ¢ does not overflow and the calculation of b + d does overflow, then the bounds are 0 and the

maximum unsigned integer. Equations (5) are interpreted similarly, but the true result of a subtraction
being less than 0 constitutes an overflow (in the negative direction).

Proof. If neither a + ¢ nor b + d overflows, then x + y, withx and y in the indicated ranges, cannot
overflow, making the computed results equal to the true results, so the second inequality of (4) holds.
Ifboth @ + ¢ and b + d overflow, then so also does x + y. Now arithmetically, it is clear that

a+c22<x+y-22<pb+d-2%
This i1s what is calculated when the three terms overflow. Hence, in this case also,

at+c<x+y<h+d.
If a + ¢ does not overflow, but b + d does, then

a+c<232—1andb+d>2%

Because x + y takes on all values in the range a + ¢ to b + d, it takes on the values 232 — 1 and 23—
that is, the computed value x + y takes on the values 232 — 1 and 0 (although it doesn’t take on all
values in that range).

Lastly, the case that a + ¢ overflows, but b + d does not, cannot occur, because @ < b and ¢ < d.

This completes the proof of inequalities (4). The proof of (5) is similar, but “overflow” means that
a true difference is less than 0.
Inequalities (6) can be proved by using (5) witha =b = 0, and then renaming the variables. (The

expression —x with x an unsigned number means to compute the value of 232 —x, or of —x + 1 if you
prefer.)

Because unsigned overflow is so easy to recognize (see “Unsigned Add/Subtract” on page 31),
these results are easily embodied in code, as shown in Figure 4—1, for addition and subtraction. The
computed lower and upper limits are variables s and «, respectively.

s =a + c; s = a - d;

t=Db+ d; t=Db - c;

if (s >= a && t < b) { if (s > a && t <= b) {
s = 0; s = 0;
t = O0XFFFFFFFF;} t = OXFFFFFFFF;}




FIGURE 4-1. Propagating unsigned bounds through addition and subtraction operations.

Signed Numbers

The case of signed numbers is not so clean. As before, suppose we have bounds on two variables x
and y as follows, where all quantities are signed:

as=x<h, and

c=y=sd
We wish to compute tight bounds on x + y, x —y, and — x. The reasoning is very similar to that for the
case of unsigned numbers, and the results for addition are shown below.

gtee-dbrtda-2 iatesx+yEitd
atec<=23p+dz-231: 2 <x+y<231-1
2 <g+e<2¥ b+d<2 a+ec<x+y<b+d (7)
-l atec< b+dz223: QN x+y=<291-]
a+cz23 b+dz2:a+esx+ysb+d

The first row means that if both of the additions a + ¢ and b + d overflow in the negative direction,
then the computed sumx + y lies between the computed sums @ + ¢ and b +d. This is because all

three computed sums are too high by the same amount (23?). The second row means that if the addition
a +c overflows in the negative direction, and the additiond +d either does not overflow or
overflows in the positive direction, then the computed sumx +y can take on the extreme negative
number and the extreme positive number (although perhaps not all values in between), which is not
difficult to show. The other rows are interpreted similarly.

The rules for propagating bounds on signed numbers through the subtraction operation can easily be
derived by rewriting the bounds on y as

—d<-y<-c¢

and using the rules for addition. The results are shown below.

a-d<-2 p—c<-2 1 q-d<x—-y<bh-c
a—-d<-23bh—c2-231:-2N<x-p<23 -]
2 <ag_d<2 b—c<2:gq-d<x-y<b-c
2<a-d<2’,b—c223: 2N <x—y<2N -1
a-dz23b-c2231:g-dsx-y<bh-c

The rules for negation can be derived from the rules for subtraction by takinga = b = 0, omitting
some impossible combinations, simplifying, and renaming, The results are as follows:

a=-231 p=_231._x=_23
a=-23bx-23:-2N<_x<2¥-1

az-23:_p<-x<—g
C code for the case of signed numbers is a bit messy. We will consider only addition. It seems to



be simplest to check for the two cases in (7) in which the computed limits are the extreme negative
and positive numbers. Overflow in the negative direction occurs if the two operands are negative and
the sum is nonnegative (see “Signed Add/Subtract” on page 28). Thus, to check for the condition that
a+c<-23 wecould lets - 2 + c; and then code something like “if (a2 < 0 ss c < 0 s s >= 0) .70 It
will be more efficient,! however, to perform logical operations directly on the arithmetic variables,
with the sign bit containing the true/false result of the logical operations. Then, we write the above
condition as “if (= s« ¢ & ~s) < 0) ....” These considerations lead to the program fragment shown in
Figure 4-2.

Click here to view code image

s =a + c;
t = b + d;
u=a é&c & ~s & ~(b & d &t);
v=((a”™c) | ~(a”s)) & (~b & ~d & t);
if ((u | v) < 0) |

s = 0x80000000;

t = Ox7FFFFFFF; }

FIGURE 4-2. Propagating signed bounds through an addition operation.

Here v is true (sign bit is 1) if the addition. + < overflows in the negative direction, and the
addition» + a does not overflow in the negative direction. Variable v is true if the addition = + < does
not overflow and the addition» + 4 overflows in the positive direction. The former condition can be
expressed as “a and < have different signs, or = and s have the same sign.” The “i¢” test is equivalent
to “if (<o 11 v <0)—thatis, if either = or ~ 1s true.”

4-3 Propagating Bounds through Logical Operations
As 1n the preceding section, suppose we have bounds on two variables x and y as follows, where all

quantities are unsigned:

a<x<h, and
EEpsd

Then what are some reasonably tight bounds onx |y, x & y, x © y, and —x?

(8)

Combining inequalities (8) with some inequalities from Section 2—3 on page 17, and noting that —x
=232 — 1 —x, yields

max(a, ¢)<(x | y)<b+d,
0=(x&y)<min(b, d).
0<(x®y)<b+d, and
—b=Z2-x<a,
where it 1s assumed that the addition b + d does not overflow. These are easy to compute and might

be good enough for the compiler application mentioned in the preceding section; however, the bounds
in the first two inequalities are not tight. For example, writing constants in binary, suppose



00010 < x < 00100, and
01001 < y < 10100.

Then, by inspection (e.g., trying all 36 possibilities for x and y), we see that 01010 < (x | y) <10111.
Thus, the lower bound is not max(a, ¢), nor is it a | ¢, and the upper bound is not b + d, nor is it b | d.

(9)

Given the values of g, b, ¢, and d in inequalities (8), how can one obtain tight bounds on the logical
expressions? Consider first the minimum value attained by x |y. A reasonable guess might be the
value of this expression withx and y both at their minima—that is, a |c. Example (9), however,
shows that the minimum can be lower than this.

To find the minimum, our procedure is to start withx =a and y = ¢, and then find an amount by
which to increase either x or y so as to reduce the value of x | y. The result will be this reduced value.
Rather than assigning @ and ¢ to x and y, we work directly with @ and ¢, increasing one of them when
doing so is valid and it reduces the value of a | c.

The procedure is to scan the bits of @ and ¢ from left to right. If both bits are 0, the result will have
a 0 in that position. If both bits are 1, the result will have a 1 in that position (clearly, no values of x
and y could make the result less). In these cases, continue the scan to the next bit position. If one
scanned bit is 1 and the other is 0, then it is possible that changing the 0 to 1 and setting all the
following bits in that bound’s value to 0 will reduce the value of @ | ¢. This change will not increase
the value of @ | ¢, because the result has a 1 in that position anyway, from the other bound. Therefore,
form the number with the 0 changed to 1 and subsequent bits changed to 0. If that is less than or equal
to the corresponding upper limit, the change can be made; do it, and the result is the or of the
modified value with the other lower bound. If the change cannot be made (because the altered value
exceeds the corresponding upper bound), continue the scan to the next bit position.

That’s all there is to it. It might seem that after making the change the scan should continue, looking
for other opportunities to further reduce the value of a | c. However, even if a position is found that
allows a 0 to be changed to 1, setting the subsequent bits to 0 does not reduce the value ofa |c,
because those bits are already O.

C code for this algorithm is shown in Figure 4-3. We assume that the compiler will move the
subexpressions -a s < and 2 s« ~c out of the loop. More significantly, if the number of leading zeros
instruction is available, the program can be speeded up by initializing » with

Click here to view code image

m = 0x80000000 >> nlz(a ©~ c);

Click here to view code image

¥ T

unsigned minOR (unsigned a, unsigned b,
unsigned c, unsigned d) {
unsigned m, temp;

m = 0x80000000;
while (m != 0) {
if (~a & ¢ & m) {
temp = (a | m)& -m;
if (temp <= b) {a = temp; break;}
}

else if (a & ~c & m) {



temp = (¢ | m) & -m;
if (temp <= d) {c = temp; break;}

}
m=m >> 1;
}

return a | c;

FIGURE 4-3. Minimum value of x |y with bounds on x and y.

This skips over initial bit positions in which - and < are both 0 or both 1. For this speedup to be
effective when = ~ < 1s 0 (that is, when = = ¢), the machine’s shift right instruction should be mod-64.
If number of leading zeros is not available, it may be worthwhile to use some version of the flp2
function (see page 60) with argument = " <.

Now let us consider the maximum value attained by x |y, with the variables bounded as shown in
inequalities (8). The algorithm is similar to that for the minimum, except it scans the values of bounds
b and d (from left to right), looking for a position in which both bits are 1. If such a position is found,
the algorithm tries to increase the value of ¢ | d by decreasing one of the bounds by changing the 1 to
0, and setting all subsequent bits in that bound to 1. If this is acceptable (if the resulting value is
greater than or equal to the corresponding lower bound), the change is made and the result is the value
of ¢ | d using the modified bound. If the change cannot be done, it is attempted on the other bound. If
the change cannot be done to either bound, the scan continues. C code for this algorithm is shown in
Figure 4-4. Here the subexpression» & a can be moved out of the loop, and the algorithm can be
speeded up by initializing » with

Click here to view code image

¥ T

unsigned maxOR (unsigned a, unsigned b,
unsigned c, unsigned d) {
unsigned m, temp;

m = 0x80000000;

while (m != 0) {
if (b & d & m) {
temp = (b - m) | (m - 1);
if (temp >= a) {b = temp; break;}
temp = (d - m) | (m - 1);
if (temp >= c) {d = temp; break;}

}
m=m >> 1;
}

return b | d;

FIGURE 4—4. Maximum value of x | y with bounds on x and y.

Click here to view code image

m = 0x80000000 >> nlz(b & d);

There are two ways in which we might propagate the bounds of inequalities (8) through the
expression x & y: algebraic and direct computation. The algebraic method uses DeMorgan’s rule:



xX&y=—(x|"p)

Because we know how to propagate bounds precisely through or, and it is trivial to propagate them
throughnot (@ <x<h< - b < - x<—a), we have

minAND(a, b, ¢, d) = —maxOR(—b, —a, —d, —c), and

maxAND(a, b, ¢, d) = minOR(—b, —a, —d, —c).

For the direct computation method, the code is very similar to that for propagating bounds through
or. It is shown in Figures 4-5 and 4-6.

Click here to view code image

T

unsigned minAND (unsigned a, unsigned Db,
unsigned c, unsigned d) {
unsigned m, temp;

m = 0x80000000;

while (m != 0) {
if (~a & ~c & m) {
temp = (a | m) & -m;
if (temp <= b) {a = temp; break;}
temp = (¢ | m) & -m;
if (temp <= d) {c = temp; break;}

}
m=m >> 1;
}

return a & c;

FIGURE 4-5. Minimum value of x& y with bounds on x and y.

Click here to view code image

I 4

unsigned maxAND (unsigned a, unsigned Db,
unsigned c, unsigned d) {
unsigned m, temp;

m = 0x80000000;

while (m != 0) {
if (b & ~d & m) {
temp = (b & ~m) | (m - 1);

if (temp >= a) {b = temp; break;}
}
else if (~b & d & m
temp = (d & ~m)

) A
| (m - 1);
if (temp >= c) {d =

temp; break;}
}
m=m >> 1;

}
return b & d;

FIGURE 4—6. Maximum value of x& y with bounds on x and y.

The algebraic method of finding bounds on expressions in terms of the functions for and, or, and



not works for all the binary logical expressions except exclusive or and equivalence. The reason
these two present a difficulty is that when expressed in terms of and, or, and not, there are two terms
containing x and y. For example, we are to find

mn (x@y) = mn ((x&-y) | (~x&y)).
czy=d esysd

The two operands of the or cannot be separately minimized (without proof that it works, which

actually it does), because we seek one value of x and one value of y that minimizes the whole or

expression.
The following expressions can be used to propagate bounds through exclusive or:

minXOR(a, b, ¢, d) = minAND(a, b, —~d, —c¢) | minAND(=b, —a, ¢, d).
maxXOR(a, b, ¢, d) = maxOR(0, maxAND(a, b, —d, —¢).
0, maxAND(= b, —a, c, d)).
It is straightforward to evaluate the minXOR and maxXOR functions by direct computation. The
code for minXOR is the same as that for minOR (Figure 4-3) except with the two oreax statements

removed, and the return value changed to = " c. The code for maxXOR is the same as that for maxOR
(Figure 4-4) except with the four lines under the i+ clause replaced with

Click here to view code image

temp = (b - m) | (m - 1);
if (temp >= a) b = temp;
else {

temp = (d - m) (m = 1);

I
if (temp >= c) d = temp;
}

and the return value changed to » ~ a.

Signed Bounds

If the bounds are signed integers, propagating them through logical expressions is substantially more
complicated. The calculation is irregular if 0 is within the range @ to b, or ¢ tod. One way to
calculate the lower and upper bounds for the expressionx |y is shown in Table 4-1. A “+” entry
means that the bound at the top of the column is greater than or equal to 0, and a “—” entry means that
it is less than 0. The column labeled “minOR (signed)” contains expressions for computing the lower
bound of x |y, and the last column contains expressions for computing the upper bound of x |y. One
way to program this is to construct a value ranging from 0 to 15 from the sign bits of a, b, ¢, and d,
and use a “switch” statement. Notice that not all values from 0 to 15 are used, because it is
impossible to have a > b or ¢ > d.

TABLE 4—1. SIGNED MINOR AND MAXOR FROM UNSIGNED



a | b |c | d | minOR (signed) maxOR (signed)

- | = | = | - | minOR(a, b, ¢, d) maxOR(a, b, ¢, d)
-1-1-1*1| a —1
- |- |+ |+ | minORa, b, ¢, a) mexOR(a:0;04)
- |l+]=-(-1e -1
- | +| = |+ | minte.e maxOR(0, b, 0, d)

= | T | * | * | mnOR(a, 0OxFFFFFFFF, c, d) maxOR(0, b, ¢, d)

T 1T |- |- | mnOR(a,b,c, d) maxOR(a, b, ¢, d)
1t 1= |t | minOR(a,b, c, 0xFFFFFFFF) maxOR(a, b, 0, d)
Tt 1t Y| minOR(a, b, ¢, d) maxOR(a, b, ¢, d)

For signed numbers, the relation

a<x<b® b<x<-a

holds, so the algebraic method can be used to extend the results of Table 4—1 to other logical
expressions (except for exclusive or and equivalence). We leave this and similar extensions to
others.

Exercises

1. For unsigned integers, what are the bounds on x — y if
0<x<bh and
0zy<d?

2. Show how the maxOR function (Figure 4-4) can be simplified if either= =0 orc =0 on a
machine that has the number of leading zeros instruction.



Chapter 5. Counting Bits

5—-1 Counting 1-Bits

The IBM Stretch computer (ca. 1960) had a means of counting the number of 1-bits in a word, as well
as the number of leading 0’s. It produced these two quantities as a by-product of all logical

operations! The former function is sometimes called population count (e.g., on Stretch and the
SPARCVY).

For machines that don’t have this instruction, a good way to count the number of 1-bits is to first set
each 2-bit field equal to the sum of the two single bits that were originally in the field, and then sum
adjacent 2-bit fields, putting the results in each 4-bit field, and so on. A more complete discussion of
this trick is in [RND]. The method is illustrated in Figure 5—1, in which the first row shows a
computer word whose 1-bits are to be summed, and the last row shows the result (23 decimal).

POl 13 g ] 18001l 109E]l 11110111 L1

O 1{1 01 0)0 010 1{0 1[0 Of1 Of0 1{1 0L OO0 1|1 01 01 0f1 0

Oo11HHoO0O1IO0O01TO0O0O0OTO0OO0CT HOOT IHOT1TOO[O10O0

0000010100000 T0000000110/0000T1000

0000000000001001H{O0000000000001T10

00000000000000000000000000010111

FIGURE 5-1. Counting 1-bits, “divide and conquer” strategy.

This is an example of the “divide and conquer” strategy, in which the original problem (summing
32 bits) 1s divided into two problems (summing 16 bits), which are solved separately, and the results
are combined (added, in this case). The strategy is applied recursively, breaking the 16-bit fields into
8-bit fields, and so on.

In the case at hand, the ultimate small problems (summing adjacent bits) can all be done in parallel,
and combining adjacent sums can also be done in parallel in a fixed number of steps at each stage.
The result 1s an algorithm that can be executed in log,(32) =5 steps.

Other examples of divide and conquer are the well-known techniques of binary search, a sorting
method known as quicksort, and a method for reversing the bits of a word, discussed on page 129.



The method illustrated in Figure 5—1 can be committed to C code as

Click here to view code image

x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
X = (x & 0x33333333) + ((x >> 2) & 0x33333333);
X = (x & OxOFOFOFOF) + ((x >> 4) & OxOFOFOFOF) ;
X = (x & OxO0FFOOFF) + ((x >> 8) & OxOOFFOOFF) ;
x = (x & O0xO000FFFF) + ((x >> 16) & OxOOOOQOFFFF) ;

The first line uses = >> 1) &« oxs5555555 rather than the perhaps more natural « s« oxanannnnn) >> 1,
because the code shown avoids generating two large constants in a register. This would cost an
instruction if the machine lacks the and not instruction. A similar remark applies to the other lines.

Clearly, the last and 1s unnecessary, and other and’s can be omitted when there 1s no danger that a
field’s sum will carry over into the adjacent field. Furthermore, there is a way to code the first line
that uses one fewer instruction. This leads to the simplification shown in Figure 5-2, which executes
in 21 instructions and is branch-free.

Click here to view code image

I 4

int pop(unsigned x) {

X - ((x > 1) & 0x55555555);

(x & 0x33333333) + ((x >> 2) & 0x33333333);
(x + (x >> 4)) & O0xOFOFOFOF;

X (x >> 8);

X (x >> 16);

return x & 0x0000003F;

XX X X X
[ | | [

_|_
_|_

FIGURE 5-2. Counting 1-bits in a word.

The first assignment to = is based on the first two terms of the rather surprising formula

pop(x) =1-—EJ—EJ—+.,—L;]J, (1)

In Equation (1), we must have x > 0. By treating x as an unsigned integer, Equation (1) can be
implemented with a sequence of 31 shift right immediate’s of 1, and 31 subtract’s. The procedure of
Figure 5-2 uses the first two terms of this on each 2-bit field, in parallel.

There is a simple proof of Equation (1), which is shown below for the case of a four-bit word. Let
the word be b3b,b,b,, where each b; = 0 or 1. Then,

R TT "

—(by-22+b,-21+b, - 29)
—(by- 21+ b,-29)
—(b;-2°)
= by(23—22-21-20) + h(22 - 21— 20) + b, (2" - 20) + by (20)
= by+by+ b, + b,



Alternatively, Equation (1) can be derived by noting that bit i of the binary representation of a
nonnegative integer x is given by
o= | £ |=g] <X
/ 2I i zf—l

and summing this fori = 0 to 31. Work it out—the last term is 0 because x < 232. Equation (1)
generalizes to other bases. For base ten it is

sum_digits(x) = x—9| X [-9| X |-...
B 10 100

where the terms are carried out until they are 0. This can be proved by essentially the same technique
used above.

A variation of the above algorithm is to use a base 4 analogue of Equation (1) as a substitute for the
second executable line of Figure 5-2:

Click here to view code image

X = x - 3*((x >> 2) & 0x33333333)

This code, however, uses the same number of instructions as the line it replaces (six), and requires a
fast multiply-by-3 instruction.

An algorithm in HAKMEM memo [HAK, item 169] counts the number of 1-bits in a word by using
the first three terms of (1) to produce a word of 3-bit fields, each of which contains the number of 1-
bits that were in it. It then adds adjacent 3-bit fields to form 6-bit field sums, and then adds the 6-bit
fields by computing the value of the word modulo 63. Expressed in C, the algorithm is (the long
constants are in octal)

Click here to view code image

int pop(unsigned x) {
unsigned n;

n = (x> 1) & 033333333333; // Count bits in
X = X - n; // each 3-bit

n= (n>1) & 033333333333, // field.

X =X - n;

x = (x + (x > 3)) & 030707070707; // 6-bit sums.
return x%63; // Add 6-bit sums.

The last line uses the unsigned modulus function. (It could be either signed or unsigned if the word
length were a multiple of 3.) That the modulus function sums the 6-bit fields becomes clear by
regarding the word x as an integer written in base 64. The remainder upon dividing a base b integer
by b — 1 is, for b > 3, congruent mod » — 1 to the sum of the digits and, of course, is less than b — 1.
Because the sum of the digits in this case must be less than or equal to 32, mod(x, 63) must be equal
to the sum of the digits of x, which is to say equal to the number of 1-bits in the original x.

This algorithm requires only ten instructions on the DEC PDP-10, because that machine has an
instruction for computing the remainder with its second operand directly referencing a fullword in
memory. On a basic RISC, it requires about 13 instructions, assuming the machine has unsigned
modulus as one instruction (but not directly referencing a fullword immediate or memory operand). It



is probably not very fast, because division is almost always a slow operation. Also, it doesn’t apply
to 64-bit word lengths by simply extending the constants, although it does work for word lengths up to
62.

The return statement in the code above can be replaced with the following, which runs faster on
most machines, but is perhaps less elegant (octal notation again).

Click here to view code image

return ((x * 0404040404) >> 26) + // Add 6-bit sums.
(x >> 30);

A variation on the HAKMEM algorithm is to use Equation (1) to count the number of 1’s in each 4-
bit field, working on all eight 4-bit fields in parallel [Hayl]. Then, the 4-bit sums can be converted to

8-bit sums in a straightforward way, and the four bytes can be added with a multiplication by
0x01010101. This gives

Click here to view code image

int pop(unsigned x) {
unsigned n;

n=(x>1) & 0x77777777; // Count bits in
X = X - n; // each 4-bit
n=(n>>1) & 0x77777777; // field.

X = X — n;

n= (n>>1) & 0x77777777;

X = X — n;

x = (x + (x > 4)) & O0xOFOFQOFOF; // Get byte sums.
x = x*0x01010101; // Add the bytes.

return x >> 24;

This 1s 19 instructions on the basic RISC. It works well 1f the machine 1s two-address, because the
first six lines can be done with only one move register instruction. Also, the repeated use of the mask
0x77777777 permits loading it into a register and referencing it with register-to-register instructions.
Furthermore, most of the shifts are of only one position.

A quite different bit-counting method, illustrated in Figure 5-3, is to turn off the rightmost 1-bit
repeatedly [Weg, RND], until the result is 0. It is very fast if the number of 1-bits is small, taking 2 +
S5pop(x) instructions.

Click here to view code image
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int pop(unsigned x) {
int n;

n+ 1;
X & (x - 1);

returnn;

FIGURE 5-3. Counting 1-bits in a sparsely populated word.



This has a dual algorithm that is applicable if the number of 1-bits is expected to be large. The dual
algorithm keeps turning on the rightmost 0-bit with x = x |  + 1), until the result is all 1’s (—1). Then,

it returns 32 — n. (Alternatively, the original number x can be complemented, or z can be initialized to
32 and counted down.)

A rather amazing algorithm is to rotate x left one position, 31 times, adding the 32 terms [MM].
The sum is the negative of pop(x)! That s,

31
pop(x) = - ¥ (x Zi), (2)
i=0

where the additions are done modulo the word size, and the final sum is interpreted as a two’s-
complement integer. This is just a novelty; it would not be useful on most machines, because the loop
is executed 31 times and thus it requires 63 instructions, plus the loop-control overhead.

To see why Equation (2) works, consider what happens to a single 1-bit of x. It gets rotated to all
positions, and when these 32 numbers are added, a word of all 1-bits results. This is —1. To illustrate,
consider a 6-bit word size and x = 001001 (binary):

001001 x

010010 x %1
100100 x %2
001001 x %3
010010 x4

100100 x5
Of course, rotate-right would work just as well.

The method of Equation (1) 1s very similar to this “rotate and sum” method, which becomes clear
by rewriting (1) as

31
pop(x) = x— _Z (x = ).

i=1
This gives a slightly better algorithm than Equation (2) provides. It is better because it uses shift
right, which is more commonly available than rotate, and because the loop can be terminated when
the shifted quantity becomes 0. This reduces the loop-control code and may save a few iterations. The
two algorithms are contrasted in Figure 5-4.

Click here to view code image

int pop(unsigned x) {
int i, sum;

// Rotate and sum method // Shift right & subtract
x; // sum = x;

(1 = 1; i <= 31; 1i++) { // while (x != 0) {
X = rotatel (x, 1); // X = x > 1;



sum = sum + X; // sum = sum - X;
} // 0}

return -sum; // return sum;

FIGURE 5—4. Two similar bit-counting algorithms.

A less interesting algorithm that may be competitive with all the algorithms for pop(x) in this
section is to have a table that contains pop(x) for, say, x in the range 0 to 255. The table can be

accessed four times, adding the four numbers obtained. A branch-free version of the algorithm looks
like this:

Click here to view code image

int pop (unsigned x) { // Table lookup.
static char table[256] = {
o, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,

4, 5, 5, 6, 5, 6, 6, 7, 5, 6,
return table[x & OxFF] +
table[(x >> 8) & OxFF] +
table[ (x >> 16) & OxFF] +
table[ (x >> 24)];
}

Item 167 in [HAK] contains a short algorithm for counting the number of 1-bits in a 9-bit quantity
that 1s right-adjusted and 1solated in a register. It works only on machines with registers of 36 or more
bits. Below is a version of that algorithm that works on 32-bit machines, but only for 8-bit quantities.

Click here to view code image

x = x * 0x08040201; // Make 4 copies.

X = x > 3; // So next step hits proper bits.
x = x & 0x11111111; // Every 4th bit.

x = x * 0x11111111; // Sum the digits (each 0 or 1).
X = x >> 28; // Position the result.

A version for 7-bit quantities is

Click here to view code image

x = x * 0x02040810; // Make 4 copies, left-adjusted.
X = x & 0x11111111; // Every 4th bit.

x = x * 0x11111111; // Sum the digits (each 0 or 1).
X = x >> 28; // Position the result.

In these, the last two steps can be replaced with steps to compute the remainder of x modulo 15.

These are not particularly good; most programmers would probably prefer to use table lookup. The
latter algorithm above, however, has a version that uses 64-bit arithmetic, which might be useful for a
64-bit machine that has fast multiplication. Its argument is a 15-bit quantity. (I don’t believe there is a
similar algorithm that deals with 16-bit quantities, unless it is known that not all 16 bits are 1.) The
data type 1ong 10ng 1s @ C extension found in many C compilers, old and new, for 64-bit integers. It is
made official in the C99 standard. The suffix vt makes unsigned 1ong 10ng cOnstants.

Click here to view code image

int pop(unsigned x) {



unsigned long long y;

y = x * 0x0002000400080010ULL;
y =y & 0x11111111111111110ULL;
y =y * 0x11111111111111110ULL;

y =y > 60;
return y;

}

Sum and Difference of Population Counts of Two Words

To compute pop(x) + pop(y) (if your computer does not have the population count instruction), some
time can be saved by using the first two lines of Figure 5-2 on x and y separately, adding x and y, and
then executing the last three stages of the algorithm on the sum. After the first two lines of Figure 5-2
are executed, x and y consist of eight 4-bit fields, each containing a maximum value of 4. Thus, x and
y can safely be added, because the maximum value in any 4-bit field of the sum would be 8, so no
overflow occurs. (In fact, three words can be combined in this way.)

This idea also applies to subtraction. To compute pop(x) — pop(y), use

pop(x) —pop(y) = pop(x) - (32— pop(¥))
= pop{x) + pop(y) — 32.
Then, use the technique just described to compute pop(x) + pop(y). The code is shown in Figure 5-5.

It uses 32 instructions, versus 43 for two applications of the code in Figure 5-2 followed by a
subtraction.

Click here to view code image
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int popDiff (unsigned x, unsigned y) {

X =X - ((x > 1) & 0x55555555);

x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
Yy = ~yi

y =y — ((y > 1) & 0x55555555);

y = (y & 0x33333333) + ((y >> 2) & 0x33333333);
X =X +vy;

X = (x & O0xOFOFOFOF) + ((x >> 4) & OxOFOFOFOF) ;
X =x + (x > 8);

X =x + (x > 106);

return (x & 0x0000007F) - 32;

FIGURE 5-5. Computing pop(x) — pop(y).
Comparing the Population Counts of Two Words

Sometimes one wants to know which of two words has the larger population count without regard to
the actual counts. Can this be determined without doing a population count of the two words?
Computing the difference of two population counts as in Figure 5-5, and comparing the result to 0 is
one way, but there is another way that is preferable if either the population counts are expected to be
low or if there is a strong correlation between the particular bits that are set in the two words.

The 1dea is to clear a single bit in each word until one of the words is all zero; the other word then
has the larger population count. The process runs faster in its worst and average cases if the bits that
are 1 at the same positions in each word are first cleared. The code is shown in Figure 5-6. The



procedure returns a negative integer if pop(x) < pop(y), 0 if pop(x) = pop(y), and a positive integer
(1) if pop(x) > pop().

Click here to view code image

int popCmpr (unsigned xp, unsigned yp) {
unsigned x, Vy;

X = Xp & ~Yp; // Clear bits where
y = Yp & ~xXp; // both are 1.
while (1) {

if (x == 0) return y | -y;

if (y == 0) return 1;

X =x & (x - 1); // Clear one bit

y =y & (y - 1); // from each.

}

FIGURE 5—-6. Comparing pop(x) with pop(y).

After clearing the common 1-bits in each 32-bit word, the maximum possible number of 1-bits in
both words together is 32. Therefore, the word with the smaller number of 1-bits can have at most 16.
Thus, the loop in Figure 5—6 i1s executed a maximum of 16 times, which gives a worst case of 119
instructions executed on the basic RISC (16 - 7 + 7). A simulation using uniformly distributed random
32-bit integers showed that the average population count of the word with the smaller population
count is approximately 6.186, after clearing the common 1-bits. This gives an average execution time
of about 50 instructions executed for random 32-bit inputs, not as good as using Figure 5-5. For this
procedure to beat that of Figure 55, the number of 1-bits in either x or y, after clearing the common 1-
bits, would have to be three or less.

Counting the 1-bits in an Array

The simplest way to count the number of 1-bits in an array (vector) of fullwords, in the absence of the
population count instruction, is to use a procedure such as that of Figure 5-2 on page 82 on each word
of the array and simply add the results. We call this the “naive” method. Ignoring loop control, the
generation of constants, and loads from the array, it takes 16 instructions per word: 15 for the code of
Figure 5-2, plus one for the addition. We assume the procedure is expanded in line, the masks are
loaded outside the loop, and the machine has a sufficient number of registers to hold all the quantities
used in the calculation.

Another way is to use the first two executable lines of Figure 5-2 on groups of three words in the
array, adding the three partial results. Because each partial result has a maximum value of 4 in each
four-bit field, the sum of the three has a maximum value of 12 in each four-bit field, so no overflow
occurs. This idea can be applied to the 8- and 16-bit fields. Coding and compiling this method
indicates that it gives about a 20% reduction over the naive method in total number of instructions
executed on the basic RISC. Much of the savings are cancelled by the additional housekeeping
instructions required. We will not dwell on this method because there is a much better way to do it.

The better way seems to have been invented by Robert Harley and David Seal in about 1996
[Seall]. It is based on a circuit called a carry-save adder (CSA), or 3:2 compressor. A CSA is

simply a sequence of independent full adders! [H&P], and it is often used in binary multiplier
circuits.



In Boolean algebra notation, the logic for each full adder is

h<«—ab+ac+bc=ab+ (a+b)c=ab+(a®b)c,
[ — (a® b) @ c.

where a, b, and c are the 1-bit inputs, / is the low-bit output (sum) and % is the high-bit output (carry).
Changing a + b on the first line to a ® b is justified because whena and b are both 1, the term ab
makes the value of the whole expression 1. By first assigninga © b to a temporary, the full adder
logic can be evaluated in five logical instructions, each operating on 32 bits in parallel (on a 32-bit
machine). We will refer to these five instructions as CSA(A, [, a, b, ¢). This is a “macro,” with 4 and
[ being outputs.

One way to use the CSA operation is to process elements of the array 4 in groups of three, reducing
each group of three words to two, and applying the population count operation to these two words. In
the loop, these two population counts are summed. After executing the loop, the total population count
of the array is twice the accumulated population count of the CSA’s high-bit outputs, plus the
accumulated population count of the low-bit outputs.

Let n, be the number of instructions required for the CSA steps and 7, be the number of instructions
required to do the population count of one word. Ona typical RISC machine n, = 5 and n,, = 15.
Ignoring loads from the array and loop control (the code for which may vary quite a bit from one
machine to another), the loop discussed above takes (n, + 2n, +2)/3 =~ 12.33 instructions per word of
the array (the “+2” is for the two additions in the loop). This is in contrast to the 16 instructions per
word required by the naive method.

There 1s another way to use the CSA operation that results in a program that’s more efficient and
slightly more compact. This is shown in Figure 5-7. It takes (n, +n, + 1)/2 =10.5 instructions per
word (ignoring loop control and loads). In this code, the CSA operation expands into

Click here to view code image
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#define CSA(h,1l, a,b,c) \

{unsigned u = a ”~ b; unsigned v = c; \
h=(a&b) | (v &v); 1L =u” v;}
int popArray(unsigned A[], int n) {
int tot, 1i;

unsigned ones, twos;

tot = 0; // Initialize.

ones = 0;

for (1 = 0; 1 <=n - 2; 1 =1+ 2) {
CSA (twos, ones, ones, A[i], A[i+1])
tot = tot + pop(twos);

}

tot = 2*tot + pop(ones);

if (n & 1) // If there's a last one,
tot = tot + pop(A[il]); // add it in.

return tot;



FIGURE 5-7. Array population count, processing elements in groups of two.

Click here to view code image

u = ones ~ A[i];

v = A[i+1];

twos = (ones & A[i]) | (u & Vv);
ones = u ~ v;

The code relies on the compiler to common the loads.

There are ways to use the CSA operation to further reduce the number of instructions required to
compute the population count of an array. They are most easily understood by means of a circuit
diagram. For example, Figure 5-8 illustrates a way to code a loop that takes array elements eight at a
time and compresses them into four quantities, labeled eights, fours, twos, and ones. The fours, twos,
and ones are fed back into the CSAs on the next loop iteration, and the 1-bits in eights are counted by
an execution of the word-level population count function, and this count is accumulated. When all of
the array has been processed, the total population count is

8pop(eights) + 4pop(fours) + 2pop(twos) + pop(ones).

fours twos ones a; aj.
CsA, Ai+2  Ai43
L
CSA, Qi+s  8i+s
— Lo
Y Y Y
CSA, CSA, Qi+e  Bi+7
Pl
CSAs
1
L J L ) L )
CSAg ones
!
Y Y Y
CSA- twos
eights fours

FIGURE 5-8. A circuit for the array population count.

The code 1s shown in Figure 5-9, which uses the CSA macro defined in Figure 5—7. The numbering
of the CSA blocks in Figure 5—8 corresponds to the order of the CSA macro calls in Figure 5-9. The
execution time of the loop, exclusive of array loads and loop control, is (7, +n, + 1)/8 = 6.375



instructions per word of the array.

Click here to view code image

¥ T

int popArray(unsigned A[], int n) {

int tot, 1i;
unsigned ones, twos, twosA, twosR,
fours, foursA, foursB, eights;

tot = 0; // Initialize.
fours = twos = ones = 0;
for (1 =0; 1 <=n - 8; 1 =1+ 8) {

CSA (twosA, ones, ones, A[i], A[i+1])
CSA (twosB, ones, ones, A[i+2], A[i+3]
CSA (foursA, twos, twos, twosA, twosB)
]
]

(
( )
(
CSA (twosA, ones, ones, A[i+4], A[i+5
(
(
(

)

CSA (twosB, ones, ones, A[i+6], A[i+7])

CSA (foursB, twos, twos, twosA, twosB)
CSA (eights, fours, fours, foursA, foursB)
tot = tot + pop(eights);

}
tot = 8*tot + 4*pop(fours + 2*pop(twos) + pop(ones);

for (1 = i; 1 < n; i++) // Simply add in the last
tot = tot + pop(A[i]); // 0 to 7 elements.
return tot;

FIGURE 5-9. Array population count, processing elements in groups of eight.

The CSAs can be connected in many arrangements other than that shown in Figure 5-8. For
example, increased parallelism might result from feeding the first three array elements into one CSA,
and the next three into a second CSA, which allows the instructions of these two CSAs to execute in
parallel. One might also be able to permute the three input operands of the CSA macros for increased
parallelism. With the plan shown in Figure 5-8, one can easily see how to use only the first three
CSAs to construct a program that processes array elements in groups of four, and also how to expand
it to construct programs that process array elements in groups of 16 or more. The plan shown also
spreads out the loads somewhat, which would be advantageous for a machine that has a relatively
low limit on the number of loads that can be outstanding at any one time.

The plan of Figure 5-8 can be generalized so that very few word population counts are done. To
sketch how this program might be constructed, it needs an array of mx2 words to hold two of each of
the variables we have called ones, twos, fours, and so forth. For an array of size n, choosing m >

[Mogy(n + 1)1+ 1 is sufficient (m = 31 is sufficient for any size array that can be held in a machine

with a 32-bit byte-addressed space). A byte array of size m is also needed to keep track of how many
(0, 1, or 2) values are currently in each row of the mx2 array. The program processes array elements
in groups of two. For each group, the CSA is invoked to compress those two array elements with a
saved value of ones, which is most conveniently kept in the [0,0] position of the mx2 array. In an
inner loop, the resulting twos is saved in the array, by scanning down (usually not far at all) to find a
row with fewer than two items. If the twos row is full, its two values are combined with twos (using
the CSA). The twos output is put in the array, resetting its row count to 1. The scan continues with the



fours output to find a place to put it, and so forth.

After completing the pass over the input array, the program next makes a pass over the (much
shorter) mx2 array, compressing all full rows, so that all rows contain only one significant value.
Lastly, the program invokes the word-level population count operation on the first element of each
row until a row with a zero count is encountered, computing the total array population count as

pop(row 0) + 2pop(row 1) + 4pop(row 2) + ....

The value suggested above for m ensures that the last row will have a zero count, which can be used
to terminate the scans.

The resulting program executes exactly l'log,(n + 3) 1 word population counts. Unfortunately it is

not practical, because the housekeeping steps for loading from and storing into the intermediate result
arrays outweigh the computational instructions that are saved. An experimental program (without
trying too hard to optimize it) ran in about 29 instructions per array word (counting all instructions in
the loop). This is significantly worse than the naive method.

Table 5—1 summarizes the number of instructions executed by this plan for various group sizes. The
values in the middle two columns ignore loads and loop control. The fourth column gives the total
loop instruction execution count, per word of the input array, produced by a compiler for the basic
RISC machine (which does not have indexed loads).

TABLE 5—1. INSTRUCTIONS PER WORD FOR THE ARRAY POPULATION COUNT

Instructions Exclusive of Loads and Loop All Instructions
Control in Loop
- (compiler
Program Formula Forn.=35,n,=15 output)
Naive method n,+ 1 16 21
Groups of 2 (H{.+HF+ 1}/2 10.5 14
Groups of 4 (3n.+n,+1)/4 7.75 10
Groups of 8 (i + n, + 1)/8 6.38 8
Groups of 16 (158, +n,+1)/16 5.69 7
Groups of 32 (3ln +n,+1)/32 5.34 6.5
n.—n.+1 e 7]

GI’GU[}S of 2" Hr.' + —2% A+ ; e

For small arrays, there are better plans than that of Figure 5—8. For example, for an array of seven
words, the plan of Figure 5-10 is quite efficient [Seall]. It executes in 4n, + 3n, + 4 = 69

instructions, or 9.86 instructions per word. Similar plans exist that apply to arrays of size 2% — 1
words for any positive integer k. The plan for 15 words executes in 1ln, + 4n, + 6 = 121

instructions, or 8.07 instructions per word.
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FIGURE 5-10. A circuit for the total population count of seven words.

Applications

An application of the population count function is in computing the “Hamming distance” between
two bit vectors, a concept from the theory of error-correcting codes. The Hamming distance is simply
the number of places where the vectors differ; that is,

dist(x, y) = pop(x®y).
See, for example, the chapter on error-correcting codes in [ Dewd].

Another application is to allow reasonably fast direct-indexed access to a moderately sparse array
A that is represented in a certain compact way. In the compact representation, only the defined, or
nonzero, elements of the array are stored. There is an auxiliary bit string array bits of 32-bit words,
which has a 1-bit for each index i for which A[i] is defined. As a speedup device, there is also an
array of words bitsum such that bitsum|j] is the total number of 1-bits in all the words of bits that
precede entryj. This is illustrated below for an array in which elements 0, 2, 32, 47, 48, and 95 are
defined.

bits bitsum data
0x00000005 0 A[0]
0x00018001 2 A[2]
0x80000000 5 A[32]
A[47]
A[48]
A[95]

Given an index i, 0 <i < 95, the corresponding index sparse_i into the data array is given by the
number of 1-bits in array bits that precede the bit corresponding to i. This can be calculated as



follows:

Click here to view code image

j = 1> 5; // 3 = i/32.

k =1 & 31; // k = rem(i, 32);

mask = 1 << k; // A "1" at position k.
if ((bits[j] & mask) == 0) goto no such element;
mask = mask - 1; // 1's to right of k.

sparse 1 = bitsum[j] + pop(bits[j] & mask);

The cost of this representation is two bits per element of the full array.

The population function can be used to generate binomially distributed random integers. To
generate an integer drawn from a population given by BINOMIAL(¢, p) where ¢ is the number of trials
and p = 1/2, generate ¢t random bits and count the number of 1’s in the # bits. This can be generalized
to probabilities p other than 1/2; see for example [Knu2, sec. 3.4.1, prob. 27].

Still another application of the population function is in computing the number of trailing 0’s in a
word (see “Counting Trailing 0’s” on page 107).

According to computer folklore, the population count function is important to the National Security
Agency. No one (outside of NSA) seems to know just what they use it for, but it may be in
cryptography work or in searching huge amounts of material.

5-2 Parity

The “parity” of a string refers to whether it contains an odd or an even number of 1-bits. The string
has “odd parity” if it contains an odd number of 1-bits; otherwise, it has “even parity.”

Computing the Parity of a Word

Here we mean to produce a 1 if a word x has odd parity, and a 0 if it has even parity. This is the sum,
modulo 2, of the bits of x—that 1s, the exclusive or of all the bits of x.

One way to compute this is to compute pop(x); the parity is the rightmost bit of the result. This is
fine 1f you have the population count instruction, but if not, there are better ways than using the code
for pop(x).

A rather direct method is to compute

n—1

ye @ (x>0,
i=0

where n is the word size, and then the parity of x is given by the rightmost bit of y. (Here © denotes
exclusive or, but for this formula ordinary addition could be used.)

The parity can be computed much more quickly, for moderately large n, as follows (illustrated for
n = 32; the shifts can be signed or unsigned):

~ X =» 1)+
"y 2> 2);
t Ay > A (3)
* ¥ == B)4
~ (y >>16);

I A
I
b kg R kM



This executes in ten instructions, as compared to 62 for the first method, even if the implied loop is
completely unrolled. Again, the parity bit is the rightmost bit of y. In fact, with either of these, if the
shifts are unsigned, then biti of y gives the parity of the bits of x at and to the left of i. Furthermore,
because exclusive or is its own inverse, x; @ x; is the parity of bits 7 — 1 through j, for i > .

This is an example of the “parallel prefix,” or “scan” operation, which has applications in parallel
computing [KRS; HS]. Given a sufficient number of processors, it can convert certain seemingly
serial processes from O(n) to O(logyn) time. For example, if you have an array of words and you
wish to compute the exclusive or scan operation on the entire array of bits, you can first use (3) on the
entire array, and then continue with shifts of 32 bits, 64 bits, and so on, doing exclusive or’s on the
words of the array. This takes more elementary (word length) exc/usive or operations than a simple
left-to-right process, and hence it is not a good idea for a uniprocessor. But on a parallel computer
with a sufficient number of processors, it can do the job in O(log,n) rather than O(n) time (where n is
the number of words in the array).

A direct application of (3) is the conversion of a Gray coded integer to binary (see page 312).

If the code (3) is changed to use left shifts, the parity of the whole word x winds up in the leftmost
bit position, and biti of y gives the parity of the bits of x at and to the right of positioni. This is
called the “parallel suffix” operation, because each bit is a function of itself and the bits that follow
it.

If rotate shift’s are used, the result is a word of all 1’s if the parity of x is odd, and of all 0’s if
even.

The five assignments in (3) can be done in any order (provided variable x is used in the first one).
If they are done in reverse order, and if you are interested only in getting the parity in the low-order
bit of y, then the last two lines:
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vy Ny >> 2);
y Ny >> 1);

Yy
Yy

can be replaced with [Huef]

Click here to view code image

y = 0x6996 >> (y & OxF);

This is an “in-register table lookup” operation. On the basic RISC it saves one instruction, or two if
the load of the constant is not counted. The low-order bit of y has the original word’s parity, but the
other bits of y do not contain anything useful.

The following method executes in nine instructions and computes the parity of x as the integer 0 or
1 (the shifts are unsigned).

Click here to view code image

X =x " (x> 1)
X = (x "~ (x >> 2)) & 0x11111111;
X = x*0x11111111;
p = (x> 28) & 1;

After the second statement above, each hex digit of x is 0 or 1, according to the parity of the bits in



that hex digit. The multiply adds these digits, putting the sum in the high-order hex digit. There can be
no carry out of any hex column during the add part of the multiply, because the maximum sum of a
column is 8.

The multiply and shift could be replaced by an instruction to compute the remainder after dividing
x by 15, giving a (slow) solution in eight instructions, if the machine has remainder immediate.

On a 64-bit machine, the above code employing multiplication gives the correct result after making
the obvious changes (expand the hex constants to 16 nibbles, each with value 1, and change the final
shift amount from 28 to 60). In this case, the maximum sum in any 4-bit column of the partial products,
other than the most significant column, is 15, so again no overflow occurs that affects the result in the
most significant column. On the other hand, the variation that computes the remainder upon division
by 15 does not work on a 64-bit machine, because the remainder is the sum of the nibbles modulo 15,
and the sum may be as high as 16.

Adding a Parity Bit to a 7-Bit Quantity

Item 167 in [HAK] contains a novel expression for putting even parity on a 7-bit quantity that is right-
adjusted and isolated in a register. By this we mean to set the bit to the left of the seven bits, to make
an 8-bit quantity with even parity. Their code is for a 36-bit machine, but it works on a 32-bit
machine as well.

modu((x * 0x10204081) & 0x888888FF, 1920)

Here, modu(a, b) denotes the remainder of @ upon division by b, with the arguments and result
interpreted as unsigned integers, “*”” denotes multiplication modulo 232, and the constant 1920 is 15 -
27. Actually, this computes the sum of the bits of x, and places the sum just to the left of the seven bits
comprising x. For example, the expression maps 0x0000007F to 0x000003FF, and 0x00000055 to

0x00000255.
Another ingenious formula from [HAK] is the following, which puts odd parity on a 7-bit integer:

modu((x * 0x00204081) | 0x3DB6DB00, 1152),

where 1152 =9 - 27. To understand this, it helps to know that the powers of 8 are +1 modulo 9. If the
0x3DB6DB00 is changed to 0xBDB6DB00, this formula applies even parity.

These methods are not practical on today’s machines, because memory is cheap but division is still
slow. Most programmers would compute these functions with a simple table lookup.

Applications

The parity operation is widely used to calculate a check bit to append to data. Itis also useful in
multiplying bit matrices in GF(2) (in which the add operation is exclusive or).

5—-3 Counting Leading 0’s

There are several simple ways to count leading 0’s with a binary search technique. Below 1s a model
that has several variations. It executes in 20 to 29 instructions on the basic RISC. The comparisons
are “logical” (unsigned integers).

Click here to view code image




if (x == 0) return(32);

n = 0;

if (x <= 0x0000FFFF) {n = n +16; x = x <<16;}
if (x <= OxO00FFFFFF) {n = n + 8, x = x << 8;}
if (x <= O0xOFFFFFFF) {n = n + 4; x = x << 4;}
if (x <= Ox3FFFFFFF) {n = n + 2, x = x << 2;}
if (x <= OX7FFFFFFF) {n =n + 1;}

return n;

One variation is to replace the comparisons with and’s:

Click here to view code image

if ((x & OxFFFF0000) == 0) {n
if ((x & OxFF000000) == 0) {n

n +16; x
n + 8; x

X <<16;}
x << 8}

Another variation, which avoids large immediate values, is to use shift right instructions.

The last i ¢ statement 1s simply adding 1 to » if the high-order bit of x is 0, so an alternative, which
saves a branch instruction, is:

Click here to view code image
n=n+1- (x > 31);

The “+ 17 1n this assignment can be omitted if » 1s initialized to 1 rather than to 0. These observations
lead to the algorithm (12 to 20 instructions on the basic RISC) shown in Figure 5-11. A further
improvement is possible for the case in which x begins with a 1-bit: change the first line to

Click here to view code image

if ((int)x <= 0) return (~x >> 26) & 32;

Click here to view code image

T 1

int nlz(unsigned x) {

int n;

if (x == 0) return(32);

n = 1;

if ((x >> 16) == 0) {n = n +16; x = x <<16;}
if ((x >> 24) == 0) {n =n + 8; x = x << §8;}
1f ((x >> 28) == 0) {n =n + 4; x = x << 4;}
if ((x >> 30) == 0) {n =n + 2; x = x << 2;}
n=mn- (x> 31);

return n;

FIGURE 5-11. Number of leading zeros, binary search.

Figure 5-12 illustrates a sort of reversal of the above. It requires fewer operations the more
leading 0’s there are, and avoids large immediate values and large shift amounts. It executes in 12 to
20 1instructions on the basic RISC.

Click here to view code image
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int nlz (unsigned x) {
unsigned vy;

int n;

n = 32;

y = x >>16; if (y !'= 0) {n = n -16; x = y;}
y = x > 8; 1if (y !'= 0) {n =n - 8; x = vy;}
y =x > 4; if (y '=0) {n=n - 4; x = y;}
y =x > 2; 1if (y '=0) {n=n - 2; x = vy;}
y = x >> 1; 1if (y !'= 0) return n - 2;
return n - Xx;

FIGURE 5-12. Number of leading zeros, binary search, counting down.
This algorithm is amenable to a “table assist”: the last four executable lines can be replaced by

Click here to view code image

static char table[256] = {0,1,2,2,3,3,3,3,4,4,...,8);
return n - table[x];

Many algorithms can be aided by table lookup, but this will not often be mentioned here.

For compactness, this and the preceding algorithms in this section can be coded as loops. For
example, the algorithm of Figure 5—-12 becomes the algorithm shown in Figure 5—13. This executes in
23 to 33 basic RISC instructions, ten of which are conditional branches.

Click here to view code image
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int nlz(unsigned x) {
unsigned vy;
int n, c;

32;
16;

o0 3
[l

y =x > ¢c; if (y '=0) {nh=n - c¢c; x = vy;}
c =c > 1;

} while (c != 0);

return n - x;

FIGURE 5-13. Number of leading zeros, binary search, coded as a loop.

One can, of course, simply shift left one place at a time, counting, until the sign bit is on; or shift
right one place at a time until the word is all 0. These algorithms are compact and work well if the
number of leading 0’s is expected to be small or large, respectively. One can combine the methods, as
shown inFigure 5-14. We mention this because the technique of merging two algorithms and
choosing the result of whichever one stops first is more generally applicable. It leads to code that
runs fast on superscalar machines, because of the proximity of independent instructions. (These
machines can execute two or more instructions simultaneously, provided they are independent.)

Click here to view code image
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int nlz (int x) {



int y, n;

n = 0;
y = %X;
L: if (x < 0) return n;

if (y == 0) return 32 - n;
n=n+1;

x = x << 1;

y =y > 1;

goto L;

FIGURE 5-14. Number of leading zeros, working both ends at the same time.

On the basic RISC, this executes in min(3 + 6nlz(x), 5 + 6(32 — nlz(x))) instructions, or 99 worst
case. One can imagine a superscalar machine executing the entire loop body in one cycle if the
comparison results are obtained as a by-product of the shifts, or in two cycles otherwise, plus the
branch overhead.

It is straightforward to convert either of the algorithms of Figure 511 or Figure 5-12 to a branch-
free counterpart. Figure 515 shows a version that does the job in 28 basic RISC instructions.

Click here to view code image
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int nlz (unsigned x) {
int y, m, n;

y = —(x >> 16); // If left half of x is O,
m = (y >> 16) & 16; // set n = 16. If left half
n =16 - m; // 1s nonzero, set n = 0 and
X = X >> m; // shift x right 16.
// Now x 1is of the form 0000xxxx.
y = x - 0x100; // If positions 8-15 are O,
m (y > 16) & 8; // add 8 to n and shift x left 8.
n=n+m;
x = x << m;
y = x - 0x1000; // If positions 12-15 are O,
m= (y > 16) & 4; // add 4 to n and shift x left 4.
n=n+m;
x = x << m;
y = x - 0x4000; // If positions 14-15 are O,
m= (y > 16) & 2; // add 2 to n and shift x left 2.
n=n+m;
x = x << m;
y = x >> 14; // Set y =20, 1, 2, or 3.
m=y & ~(y >> 1); // Setm =20, 1, 2, or 2 resp.
return n + 2 - m;

FIGURE 5-15. Number of leading zeros, branch-free binary search.

If your machine has the population count instruction, a good way to compute the number of
leading zeros function is given in Figure 5—16. The five assignments to x can be reversed, or, in fact,



done in any order. This is branch-free and takes 11 instructions. Even if population count is not
available, this algorithm may be useful. Using the 21-instruction code for counting 1-bits given in
Figure 5-2 on page 82, it executes in 32 branch-free basic RISC instructions.

Click here to view code image
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int nlz(unsigned x) {
int pop(unsigned x);
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X (x >>106);
return pop (~x);

FIGURE 5-16. Number of leading zeros, right-propagate and count 1-bits.

Robert Harley [Harley] devised an algorithm for nlz(x) that is very similar to Seal’s algorithm for
ntz(x) (see Figure 5-25 on page 111). Harley’s method propagates the most significant 1-bit to the
right using shift’s and or’s, and multiplies modulo 232 by a special constant, producing a product
whose high-order six bits uniquely identify the number of leading 0’s in x. It then does a shift right
and a table lookup (indexed load) to translate the six-bit identifier to the actual number of leading 0’s.
As shown in Figure 5—17, it consists of 14 instructions, including a multiply, plus an indexed load.
Table entries shown as v are unused.

Click here to view code image
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int nlz(unsigned x) {

static char table[64] =
{32,31, u,16, u,30, 3, u, 15, u, u, u,29,10, 2, u,
u, u,12,14,21, u,19, u, u,28, u,25, u, 9, 1, u,
17, u, 4, u, u, u,l1ll, u, 13,22,20, u,26, u, u,ls,
5, u, u,23, u,27, u, 6, u,24, 7, u, 8, u, 0, u};

X =x | (x> 1); // Propagate leftmost

X =x | (x> 2); // 1-bit to the right.

X =x | (x > 4);

X =x | (x > 8);

X =x | (x >>16);

x = x*0x06EB14F9; // Multiplier is 7*255%**3,

return table[x >> 26];

FIGURE 5-17. Number of leading zeros, Harley’s algorithm.

The multiplier is 7-255°, so the multiplication can be done as shown below. In this form, the
function consists of 19 elementary instructions, plus an indexed load.

Click here to view code image

x = (x << 3) - x; // Multiply by 7.



x = (x << 8) - x5 // Multiply by 255.
X = (x << 8) - x; // Again.
x = (x << 8) - x; // Again.

There are many multipliers that have the desired uniqueness property and whose factors are all of
the form 2% + 1. The smallest is 0x045BCED1 = 17 - 65- 129 -513. There are no such multipliers
consisting of three factors if the table size is 64 or 128 entries. If the table size is 256 entries,
however, there are a number of such multipliers. The smallest 1s 0x01033CBF = 65-255-1025 (using
this would save two instructions at the expense of a larger table).

Julius Goryavsky [Gor] has found several variations of Harley’s algorithm that reduce the table
size at the expense of a few instructions, or have improved parallelism, or have other desirable
properties. One, shown in Figure 5—18, 1s a clear winner if the multiplication is done with shifts and
adds. The code changes only the table and the lines that contain the shift right of 16 and the following
multiply in Figure 5—17. If the machine has and not, this saves two instructions because the multiplier

can be factored as 511:2047 - 16383 (mod 23?), which can be done in six elementary instructions
rather than eight. If the machine does not have and not, it saves one instruction.

Click here to view code image
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static char table[64] =
{32,20,19, u, u,18, u, 7, 10,17, u, u,14, u, 6, u,
u, 9, u,16, u, u, 1,20, u,13, u, u,24, 5, u, u,
u,21, u, 8,11, u,15, u, u, u, u, 2,27, 0,25, u,
22, u,12, u, u, 3,28, u, 23, u, 4,29, u, u,30,31};

X & ~(x >> 16);
x*0xFD7049FF;

X e
I

FIGURE 5-18. Number of leading zeros, Goryavsky’s variation of Harley’s algorithm.

Floating-Point Methods

The floating-point post-normalization facilities can be used to count leading zeros. It works out quite
well with IEEE-format floating-point numbers. The idea is to convert the given unsigned integer to
double-precision floating-point, extract the exponent, and subtract it from a constant. Figure 5-19
illustrates a complete procedure for this.

Click here to view code image
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int nlz(unsigned k) {

union {
unsigned asInt([2];
doubleasDouble;

i

int n;

asDouble = (double)k + 0.5;

n = 1054 - (as!nt[LE] >> 20);

return n;



FIGURE 5-19. Number of leading zeros, using IEEE floating-point.

The code uses the C++ “anonymous union” to overlay an integer with a double-precision floating-
point quantity. Variable = must be 1 for execution on a little-endian machine, and 0 for big-endian.
The addition of 0.5, or some other small number, is necessary for the method to work when « - 0.

We will not attempt to assess the execution time of this code, because machines differ so much in
their floating-point capabilities. For example, many machines have their floating-point registers
separate from the integer registers, and on such machines data transfers through memory may be
required to convert an integer to floating-point and then move the result to an integer register.

The code of Figure 5-19 is not valid C or C++ according to the ANSI standard, because it refers to
the same memory locations as two different types. Thus, one cannot be sure it will work ona
particular machine and compiler. It does work with IBM’s XL.C compiler on AIX, and with the GCC
compiler on AIX and on Windows 2000 and XP, at all optimization levels (as of this writing,
anyway). If the code is altered to do the overlay defining with something like

Click here to view code image

xX = (double)k + 0.5;
n = 1054 - (*((unsigned *)é&xx + LE) >> 20);

it does not work on these systems with optimization turned on. This code, incidentally, violates a
second ANSI standard, namely, that pointer arithmetic can be performed only on pointers to array
elements [Cohen]. The failure, however, is due to the first violation, involving overlay defining.

In spite of the flakiness of this code,? three variations are given below.
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asbDouble = (double)k;
n 1054 - (asInt[LE] >> 20);
n (n & 31) + (n >> 9);

k =k & ~(k > 1);
asFloat = (float)k + 0.5f;
n = 158 - (asInt >> 23);

k =k & ~(k > 1);
asFloat = (float)k;

n 158 - (asInt >> 23);
n (n & 31) + (n >> 6);

In the first variation, the problem with « - o is fixed not by a floating-point addition of 0.5, but by
integer arithmetic on the result » (which would be 1054, or 0x41E, if the correction were not done).

The next two variations use single-precision floating-point, with the “anonymous union” changed in
an obvious way. Here there is a new problem: Rounding can throw off the result when the rounding
mode is either round to nearest (almost universally used) or round toward +oo. For round to nearest
mode, the rounding problem occurs for x in the ranges hexadecimal FFFFFF80 to FFFFFFFF,
7FFFFFCO to 7FFFFFFF, 3FFFFFEO to 3FFFFFFF, and so on. In rounding, an add of 1 carries all
the way to the left, changing the position of the most significant 1-bit. The correction steps used above
clear the bit to the right of the most significant 1-bit, blocking the carry. If « is a 64-bit quantity, this
correction is also needed for the code of Figure 5-19 and for the first of the three variations given
above.



The GNU C/C++ compiler has a unique feature that allows coding any of these schemes as a
macro, giving in-line code for the function references [Stall]. This feature allows statements,
including declarations, to be inserted in code where an expressionis called for. The sequence of
statements would usually end with an expression, which is taken to be the value of the construction.
Such a macro definition is shown below, for the first single-precision variation. (In C, it is customary
to use uppercase for macro names.)
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#define NLZ (kp) \

({union {unsigned asInt; float asFloat;}; \
unsigned k = (kp), kk = k & ~( k >> 1); \
_asFloat = (float) kk + 0.5f; \

158 - (_asInt >> 23);1})

The underscores are used to avoid name conflicts with parameter xp; presumably, user-defined names
do not begin with underscores.

Comparing the Number of Leading Zeros of Two Words
There is a simple way to determine which of two words x and y has the larger number of leading
zeros [KnuS] without actually computing nlz(x) or nlz(y). The methods are shown in the equivalences
below. The three relations not shown are, of course, obtained by complementing the sense of the
comparison on the right.

nlz(x) = nlz(y) ifandonlyif (x@y)<(x &y)

nlz(x) <nlz(y) ifandonlyif (x& —y)Zy

nlz(x) <nlz(y) ifandonlyif (y& —x)<x
Relation to the Log Function
The “nlz” function is, essentially, the “integer log base 2 function. For unsigned x # 0,

| log,(x) | = 31 —nlz(x), and

[logy(x)] = 32 -nlz(x-1).
See also Section 11-4, “Integer Logarithm,” on page 291.

Another closely related function is bitsize, the number of bits required to represent its argument as
a signed quantity in two’s-complement form. We take its definition to be

E; x=—-1or0,
2, x=-2orl,
3 A <r<— <y<
B 35 4<x<-3or2<x<3,
4, B<x=-Sord=sx<T,
132, 2l <x< 20+ ] or20<x<2311,

From this definition, bitsize(x) = bitsize(—x—1). But —x —1 = —x, so an algorithm for bitsize is
(where the shift is signed)



Click here to view code image

X =x ~ (x > 31); // If (x < 0) x =-x - 1;
return 33 - nlz(x);

An alternative, which is the same function as bitsize(x) except it gives the result 0 for x =0, is

Click here to view code image

32 - nlz(x © (x << 1))
Applications

Two important applications of the number of leading zeros function are in simulating floating-point
arithmetic operations and in various division algorithms (see Figure 9—1 on page 185 and Figure 9-3
on page 196). The instruction seems to have a miscellany of other uses.

It can be used to get the “x =" predicate in only three instructions (see “Comparison Predicates”
on page 23), and as an aid in computing certain elementary functions (see pages 281, 284, 290, and
294).

A novel application is to generate exponentially distributed random integers by generating
uniformly distributed random integers and taking nlz of the result [GLS1]. The resultis 0 with
probability 1/2, 1 with probability 1/4, 2 with probability 1/8, and so on. Another application is as an
aid in searching a word for a consecutive string of 1-bits (or 0-bits) of a certain length, a process that
is used in some disk block allocation algorithms. For these last two applications, the number of
trailing zeros function could also be used.

5—4 Counting Trailing 0’s

If the number of leading zeros instruction is available, then the best way to count trailing 0’s 1s, most
likely, to convert it to a count /eading 0’s problem:

32 — nlz(—x&(x-1)).

If population count is available, a slightly better method is to form a mask that identifies the
trailing 0’s, and count the 1-bits in it [Hay2], such as

pop(—x & (x—1)), and
32 — pop(x | —x).

Variations exist using other expressions for forming a mask that identifies the trailing zeros ofx,
such as those given in Section 2—1, “Manipulating Rightmost Bits,” on page 11. These methods are
also reasonable even if the machine has none of the bit-counting instructions. Using the algorithm for
pop(x) given in Figure 5-2 on page 82, the first expression above executes in about 3 + 21 = 24
instructions (branch-free).

Figure 5-20 shows an algorithm that does it directly, in 12 to 20 basic RISC instructions (for x #
0).
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int ntz (unsigned x) {
int n;



if (x == 0) return(32);

n=1;

if ((x & O0x0000FFFF) == 0) {n =n + 16; x = x >>16;}
if ((x & 0x000000FF) == 0) {n =n + 8; x = x >> 8;}
if ((x & 0x0000000F) == 0) {n=n+ 4; x = x >> 4;}
if ((x & 0x00000003) == 0) {(n=n+ 2; x =x >> 2;}
return n - (x & 1);

FIGURE 5-20. Number of trailing zeros, binary search.

The » + 16 can be simplified to 17 if that helps, and if the compiler is not smart enough to do that for
you (this does not affect the number of instructions as we are counting them).

Figure 5-21 shows a variation that uses smaller immediate values and simpler operations. It

executes in 12 to 21 basic RISC instructions. Unlike the above procedure, when the number of trailing

0’s 1s small, the procedure of Figure 5-21 executes a larger number of instructions, but also a larger
number of “fall-through™ branches.
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int ntz (unsigned x) {
unsigned y;

int n;

if (x == 0) return 32;

n = 31;

y = x <<16; if (y '= 0) {n=n -16; x = y;}
y = x << 8; if (y '=0) {n=n - 8; x =y;}
y =x << 4; if (y '=0) {nh=n-4; x = vy;}
y = x << 2; if (y '=0) {n=n-2; x =y;}
y =x << 1; if (y '=0) {n=n - 1;}

return n;

FIGURE 5-21. Number of trailing zeros, smaller immediate values.
The line just above the return statement can alternatively be coded
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n=n- ((x << 1) > 31);

which saves a branch, but not an instruction.

In terms of number of instructions executed, it is hard to beat the “search tree” [Aus2]. Figure 5-22
illustrates this procedure for an 8-bit argument. This procedure executes in seven instructions for all
paths except the last two (return 7 or 8), which require nine. A 32-bit version would execute in 11 to
13 instructions. Unfortunately, for large word sizes, the program is quite large. The 8-bit version
above 1s 12 lines of executable source code and would compile into about 41 instructions. A 32-bit
version would be 48 lines and about 164 instructions, and a 64-bit version would be twice that.
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int ntz (char x) {
if (x & 15) {
if (x & 3) {
if (x & 1) return O;
else return 1;
}
else 1if (x & 4) return 2;
else return 3;
}
else 1if (x & 0x30) {
if (x & 0x10) return 4;
else return 5;
}
else if (x & 0x40) return 6;
else i1f (x) return 7;
else return 8;

FIGURE 5-22. Number of trailing zeros, binary search tree.

If the number of trailing 0’s is expected to be small or large, then the simple loops shown in Figure
5-23 are quite fast. The algorithm on the left executes in 5 + 3ntz(x), and that on the right in 3 + 3(32
—ntz(x)) basic RISC instructions.
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int ntz (unsigned x) {

int n;

X = ~x & (x - 1);

n = 0; // n = 32;

while (x != 0) { // while (x !'= 0) {
n=n+1; // n=n-1;
X =x > 1; // X =X + %

} /)

return n; // return n;

FIGURE 5-23. Number of trailing zeros, simple counting loops.

Dean Gaudet [Gaud] devised an algorithm that is interesting because with the right instructions it is
branch-free, load-free (does not use table lookup), and has lots of parallelism. It is shown in Figure
5-24.
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int ntz (unsigned x) {
unsigned y, bz, b4, b3, b2, bl, bO;

y = X & —-X; // Isolate rightmost 1-bit.
bz =y 2 0 : 1; // 1 if y = 0.

b4 = (y & O0xO0000FFFF) 2 O 16;

b3 = (y & 0xOO0OFFOOFF) 2 O 8;

b2 = (y & O0xOFOFOFOF) ? O 4,

bl = (y & 0x33333333) 2 0 2;

b0 = (y & 0x55555555) 2 0 1;



return bz + b4 + b3 + b2 + bl +b0;

FIGURE 5-24. Number of trailing zeros, Gaudet’s algorithm.

As shown, the code uses the C “conditional expression” in six places. This construct has the form a-
b:c. Its value is » 1fa 1s true (nonzero), and < if . 1s false (zero). Although a conditional expression
must, in general, be compiled into compares and branches, for the simple cases in Figure 5-24
branching can be avoided if the machine has a compare for equality to zero instruction that sets a
target register to 1 if the operand is 0, and to O if the operand is nonzero. Branching can also be
avoided by using conditional move instructions. Using compare, the assignment to »3 can be compiled
into five instructions on the basic RISC: two to generate the hex constant, an and, the compare, and a
shift left of 3. (The first, second, and last conditional expressions require one, three, and four
instructions, respectively.)

The code can be compiled into a total of 30 instructions. All six lines with the conditional
expressions can run in parallel. On a machine with a sufficient degree of parallelism, it executes in
ten cycles. Present machines don’t have that much parallelism, so as a practical matter it might help to
change the first two uses of y in the program to «. This permits the first three executable statements to
run in parallel.

David Seal [Seal2] devised an algorithm for computing ntz(x) that is based on the idea of

compressing the 232 possible values of x to a small dense set of integers and doing a table lookup. He
uses the expression x & — x to reduce the number of possible values to a small number. The value of
this expression is a word that contains a single 1-bit at the position of the least significant 1-bitinx,
or is 0 ifx = 0. Thus, x & — x has only 33 possible values. But they are not dense; they range from 0
to 231,

To produce a dense set of 33 integers that uniquely identify the 33 values of x & —x, Seal found a
certain constant which, when multiplied by x & —x, produces the identifying value in the high-order
six bits of the low-order half of the product of the constant and x & —x. Since x & — x is an integral
power of 2 or is 0, the multiplication amounts to a left shift of the constant, or it is a multiplication by
0. Using only the high-order five bits is not sufficient, because 33 distinct values are needed.

The code is shown in Figure 5-25, where table entries shown as v are unused.

Click here to view code image

T 1

int ntz (unsigned x) {

static char table[64] =

{32, 0, 1,12, 2, 6, u,l13, 3, u, 7, u, u, u, u,l4,
10, 4, u, u, 8, u, u,25, u, u, u, u, u,21,27,15,
31,11, 5, u, u, u, u, u, 9, u, u,24, u, u,20,20,

30, u, v, u, u,23, u,19, 29, u,22,18,28,17,16, u};

X = (x & —-x)*0x0450FBAF;
return table[x >> 26];

FIGURE 5-25. Number of trailing zeros, Seal’s algorithm.



As an example, if « 1s an odd multiple of 16, then « « -x = 16, so the multiplication is simply a left
shift of four positions. The high-order six bits of the low-order half of the product are then binary
010001, or 17 decimal. The table translates 17 to 4, which is the correct number of trailing 0’s for an
odd multiple of 16.

There are thousands of constants that have the necessary uniqueness property. The smallest is
0x0431472F, and the largest is 0OXFDE75C6D. Seal chose a constant for which the multiplication can

be done with a small number of shifts and adds. Since 0x0450FBAF = 17-65-65535, the
multiplication can be done as follows:

Click here to view code image

X = (x << 4) + x; // x = x*17.
x = (x << 6) + x; // x = xX*65.
X = (x << 16) - x; // x = x*65535.

With this substitution, the code of Figure 5-25 consists of nine elementary instructions, plus an
indexed /oad. Seal was interested in the ARM instruction set, which can do a shift and add in one
instruction. On that architecture, the code is six instructions, including the indexed load.

To make the multiplication even easier to do with shifts and adds, one might hope to find a constant

of the form (21 + 1)(2%2 + 1) that has the necessary uniqueness property. For a table size of 64, there
are no such integers, and there is only one other suitable integer that is a product of three such factors:
OxO8A1FBAF = 17 - 65 - 131071. Using a table size of 128 or 256 does not help. However, for a

table size of 512 there are four suitable integers of the form (2€1 + 1)(2¥2 + 1); the smallest is

0x0080FF7F = 129 - 65535. We leave it to the reader to determine the table associated with this
constant.

There is a variation of Seal’s method that is based on de Bruijn cycles [LPR]. These are cyclic
sequences over a given alphabet that contain as a subsequence every sequence of the letters of the
alphabet of a given length exactly once. For example, a cycle that contains as a subsequence every
sequence of {a, b, c} oflength 2 is aabacbbcc. Notice that the sequence ca wraps around from the
end to the beginning. If the alphabet size is & and the length is n, there are k" sequences. For a cycle to
contain all of these, it must be of length at least £, which would be its length if a different sequence
started at each position. It can be shown that there is always a cycle of this minimum possible length
that contains all k" sequences.

For our purposes, the alphabet is {0, 1}, and for dealing with 32-bit words, we are interested in a
cycle that contains all 32 sequences 00000, 00001, 00010, ..., 11111. Given such a cycle that begins
with at least four 0’s, we can compute ntz(x) by first reducing x to a word that contains a single bit at
the position of the least significant bit of x, as in Seal’s algorithm. Then, by multiplication, we can
select a 5-bit field of the de Bruijn cycle, which will be a unique value for each multiplier. This can
be mapped to give the number of trailing 0’s by a table lookup. The algorithm follows. The de Bruijn
cycle used is

Click here to view code image

0000 0100 1101 0111 0110 0101 0001 1111.

It is in effect a cycle, because in use it has trailing 0’s beyond the 32 bits shown above, which is
effectively the same as wrapping to the beginning.



There are 33 possible values of ntz(x) and only 32 five-bit subsequences in the de Bruijn cycle.
Therefore, two words with different values of ntz(x) must map to the same number by the table
lookup. The words that conflict are zero and words that end with a 1-bit. To resolve this, the code has
a test for 0 and returns 32 in that case. A branch-free way to resolve it, useful if your computer has
predicate comparison instructions, is to change the last statement to

Click here to view code image

return table[x >> 27] + 32*(x == 0);

To compare the two algorithms, Seal’s does not require the test for zero and it allows the
alternative of doing the multiplication with six elementary instructions. The de Bruijn algorithm uses
a smaller table. The de Bruijn cycle used in Figure 5-26, discovered by Danny Dubé [Dubé], is a
good one because multiplication by it can be done with eight elementary instructions. The constant is
0x04D7651F = (2047 - 5 - 256 + 1) - 31, from which one can see the shifts, adds, and subtracts that
do the job.

Click here to view code image

T 1

int ntz (unsigned x) {

static char table[32] =

{ o, 1, 2,24, 3,19, 0,25, 22, 4,20,10,16, 7,12,206,
31,23,18, 5,21, 9,15,11, 30,17, 8,14,29,13,28,27};
if (x == 0) return 32;
X = (x & -x)*0x04D7651F;

return table[x >> 27];

FIGURE 5-26. Number of trailing zeros using a de Bruijn cycle.

John Reiser [Reiser] observed that there is another way to map the 33 values of the factor x « -x in
Seal’s algorithm to a dense set of unique integers: divide and use the remainder. The smallest divisor
that has the necessary uniqueness property is 37. The resulting code is shown in Figure 5-27, where
table entries shown as u are unused.

Click here to view code image

T 1

int ntz (unsigned x) {
static char table[37] = {32, 0, 1, 26, 2, 23, 27,
u, 3, le, 24, 30, 28, 11, u, 13, 4,
7, 17, u, 25, 22, 31, 15, 29, 10, 12,
6, u, 21, 14, 9, 5, 20, 8, 19, 18};

X = (x & -x)%37;
return tablel[x];

FIGURE 5-27. Number of trailing zeros, Reiser’s algorithm.

It is interesting to note that if the numbers x are uniformly distributed, then the average number of



trailing 0’s 1s, very nearly, 1.0. To see this, sum the products p;n;, where p; is the probability that
there are exactly n, trailing 0’s. That is,

q+liogeLloge Ll 4 L

1 . 5+
R R TR T S

To evaluate this sum, consider the following array:

174 1/8 1/16 1/32 1/64
1/8 1/16 1/32 1/64
1/16 1/32 1/64

1732 1/64

1/64

The sum of each column is a term of the series for S. Hence S is the sum of all the numbers in the
array. The sum of the rows are

1/4+1/8+1/16 + 1/32+...=1/2
1/8+1/16 +1/32 + 1/64+ ...=1/4
1/16 +1/32+1/64 + 1/128 +... = 1/8

and the sum of these 1s 1/2 + 1/4 + 1/8 + ... = 1. The absolute convergence of the original series
justifies the rearrangement.

Sometimes, a function similar to ntz(x) is wanted, but a 0 argument is a special case, perhaps an
error, that should be identified with a value of the function that’s easily distinguished from the
“normal” values of the function. For example, let us define “the number of factors of 2 inx” to be

nfact2(x) = {ntz(x], x=b.
-1, x=0.

This can be calculated from
31 —nlz(x & — x).

Applications

[GLS1] points out some interesting applications of the number of trailing zeros function. It has been
called the “ruler function” because it gives the height of a tick mark on a ruler that’s divided into
halves, quarters, eighths, and so on.

It has an application in R. W. Gosper’s loop-detection algorithm, which will now be described in
some detail, because it is quite elegant and it does more than might at first seem possible.

Suppose a sequence X, X;,X,, ... is defined by X, . ; = f(X,). If the range of f'1s finite, the sequence
1s necessarily periodic. That is, it consists of a leader X;, Xj,..., Xﬂ_l followed by a cycle Xﬂ, Xi1oees



X+, that repeats without limit (X, =X ,;, X,, | =X, 1, , 1, and so on, where X is the period of the

cycle). Given the function £, the loop-detection problem is to find the index u of the first element that
repeats, and the period A. Loop detection has applications in testing random number generators and
detecting a cycle in a linked list.

One could save all the values of the sequence as they are produced and compare each new element
with all the preceding ones. This would immediately show where the second cycle starts. But
algorithms exist that are much more efficient in space and time.

Perhaps the simplest is due to R. W. Floyd [Knu2, sec. 3.1, prob. 6]. This algorithm iterates the
process

x = f(x)
y = f(/)
withx and y initialized to X,. After the nth step, x =X, and y =X,,. These are compared, and if
equal, it is known that X, and X,, are separated by an integral multiple of the period A—that is, 2n —

n =n i1s a multiple of A. Then u can be determined by regenerating the sequence from the beginning,

comparing X, to X, thenX; to X, | ;, and so on. Equality occurs whenX, is compared to X,,,,.

Finally, A can be determined by regenerating more elements, comparing X, to X, , 1, X, 5, .... This
algorithm requires only a small and bounded amount of space, but it evaluates f many times.

Gosper’s algorithm [HAK, item 132; Knu2, Answers to Exercises for Section 3.1, exercise 7]
finds the period A, but not the starting point x of the first cycle. Its main feature is that it never backs
up to reevaluate £, and it is quite economical in space and time. It is not bounded in space; it requires
a table of size log,(A) + 1, where A is the largest possible period. This is not a lot of space; for

example, if it is known a priori that A < 232, then 33 words suffice.

Gosper’s algorithm, coded in C, is shown in Figure 5-28. This C function is given the function f
being analyzed and a starting value X,. It returns lower and upper bounds on g, and the period A.

(Although Gosper’s algorithm cannot compute g, it can compute lower and upper bounds y; and x,
such that i, —; + 1 < max(A — 1, 1).) The algorithm works by comparing X,, forn =1, 2, .., to a
subset of size | log,n | + 1 of the elements of the sequence that precede X, . The elements of the subset
are the closest preceding X; such thati + 1 ends in a 1-bit (that is, i is the even number preceding n),
the closest preceding X, such thati + 1 ends in exactly one 0-bit, the closest preceding X, such that i +
1 ends in exactly two 0-bits, and so on.

Click here to view code image

void 1ld Gosper (int (*f) (int), int X0, int *mu 1,
int*mu u, int *lambda) {
int Xn, k, m, kmax, n, 1lgl;

int T[33];

T[0] = XO

Xn = X0

for (n = 1; ; n++) {
Xn = £ (Xn);
kmax = 31 - nlz(n); // Floor (log2 n).
for (k = 0; k <= kmax; k++) {



if (Xn == T[k]) goto L;

—

T[ntz(n+l)] = Xn; // No match.
}
L:
// Compute m = max{i | 1 < n and ntz(i+l) = k}.
m= ((((n>> k) - 1) | 1) << k) - 1;

*lambda = n - m;
1gl = 31 - nlz(*lambda - 1); // Ceil(log2 lambda) - 1.
*mu_u = m; // Upper bound on mu.

*mu 1 = m - max(l, 1 << 1lgl) + 1;// Lower bound on mu.

FIGURE 5-28. Gosper’s loop-detection algorithm.

Thus, the comparisons proceed as follows:

XX, X7 X X, X X3 Xioe Xo» X110 X

X, 1 Xp, X, Xg : Xg, X5, X3, X5 Xia t X120 X130 X415 X7

X;: X5, X Xo : Xy, X, X5, X5 Xis t X X3 X1, X5

Xy 1 X5 X0, Xy Xig + X, Xo, X3, X5 Xi6 * Xiap X130 X110, X5 X5
Xs 1 X X, X5 X11 Xy Xoy A5, X7 Xi7 + X X130 X110 X7, X5
X+ Xgp X5, X5 X1z * Xy Xy X1, A7 Xig + Xigo X7 X115 X75 X5

It can be shown that the algorithm always terminates with » somewhere in the second cycle—that is,
with n < u + 24. See [Knu2] for further details.

The ruler function reveals how to solve the Tower of Hanoi puzzle. Number the n disks from O to n
— 1. At each move £, as k goes from 1 to 2" — 1, move disk ntz(k) the minimum permitted distance to
the right, in a circular manner.

The ruler function can be used to generate a reflected binary Gray code (see Section 13—1 on page
311). Start with an arbitrary n-bit word, and at each step k, as k goes from 1 to 2" — 1, flip bit ntz(k).

Exercises
1. Code Dubé’s algorithm for the ntz function, expanding the multiplication.
2. Code the “right justify” function, x = ntz(x), x # 0, in three basic RISC instructions.

3. Are the parallel prefix and suffix (with XOR) operations invertible? If so, how would you
compute the inverse functions?



Chapter 6. Searching Words

6—1 Find First 0-Byte

The need for this function stems mainly from the way character strings are represented in the C
language. They have no explicit length stored with them; instead, the end of the string is denoted by an
all-0 byte. To find the length of a string, a C program uses the “strlen” (string length) function. This
function searches the string, from left to right, for the 0-byte, and returns the number of bytes scanned,
not counting the 0-byte.

A fast implementation of “strlen” might load and test single bytes until a word boundary is reached,
and then load a word at a time into a register, and test the register for the presence of a 0-byte. On
big-endian machines, we want a function that returns the index of the first 0-byte from the left. A
convenient encoding is values from 0 to 3 denoting bytes 0 to 3, and a value of 4 denoting that there is
no 0-byte in the word. This is the value to add to the string length, as successive words are searched,
if the string length is initialized to 0. On little-endian machines, one wants the index of the first 0-byte
from the right end of the register, because little-endian machines reverse the four bytes when a word
is loaded into a register. Specifically, we are interested in the following functions, where “00”
denotes a 0-byte, “nn” denotes a nonzero byte, and “xx” denotes a byte that may be 0 or nonzero.

0, x = 00xXXXXXX, (0, x = xxxxx00,
1, x = nn00xxxx, 1, x = xxxx00nn,
zbytel(x) = 12, x = nnnn00xx, zbyter(x) = {2, x = xx00nnnn,
3. x = nnnnnn00, 3. x = 0Onnnnnn.
(4., x = nnnnnnnn. (4., x = nnnnnnnn.

Our first procedure for the fznd leftmost 0-byte function, shown in Figure 61, simply tests each
byte, in left-to-right order, and returns the result when the first 0-byte is found.

Click here to view code image

int zbytel (unsigned x) {

if ((x >> 24) == 0) return 0;
else 1if ((x & O0xOOFFO0000) == 0) return 1;
else 1if ((x & O0xO0O0O0FFO00) == 0) return 2;
else if ((x & O0xO0O000O0FF) == 0) return 3;
else return 4;

FIGURE 6-1. Find leftmost 0-byte, simple sequence of tests.

This executes in two to 11 basic RISC instructions, 11 in the case that the word has no 0-bytes
(which 1s the important case for the “strlen” function). A very similar program will handle the
problem of finding the rightmost 0-byte.

Figure 6-2 shows a branch-free procedure for this function. The idea is to convert each 0-byte to
0x80, and each nonzero byte to 0x00, and then use number of leading zeros. This procedure executes
in eight instructions, if the machine has the number of leading zeros and nor instructions. Some
similar tricks are described in [Lamp].



Click here to view code image
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int zbytel (unsigned x) {

unsigned y;

int n;

// Original byte: 00 80 other

(x & Ox7F7FT7FTF)+ Ox7F7FTFTF; // TE TF 1XXXXXXX
y ~(y 1 x 1 0x7F7FTF7F); // 80 00 00000000
n nlz(y) >> 3; // n=0 ... 4, 4 if x
return n; // has no 0-byte.

y

FIGURE 6-2. Find leftmost 0-byte, branch-free code.

The position of the rightmost 0-byte is given by the number of trailing 0’s in the final value of y
computed above, divided by 8 (with fraction discarded). Using the expression for computing the
number of trailing 0’s by means of the number of leading zeros instruction (see Section 5-4,
“Counting Trailing 0’s,” on page 107), this can be computed by replacing the assignment to » in the
procedure above with:

Click here to view code image

n = (32 - nlz(~y & (y - 1))) >> 3;

This 1s a 12-instruction solution, if the machine has nor and and not.

In most situations on PowerPC, incidentally, a procedure to find the rightmost 0-byte would not be
needed. Instead, the words can be loaded with the load word byte-reverse instruction (1wbrx).

The procedure of Figure 62 is more valuable on a 64-bit machine than on a 32-bit one, because on
a 64-bit machine the procedure (with obvious modifications) requires about the same number of
instructions (seven or ten, depending upon how the constant is generated), whereas the technique of
Figure 6-1 requires 23 instructions worst case.

If only a test for the presence of a 0-byte is wanted, then a branch on zero (or nonzero) can be
inserted just after the second assignment to y.

A method similar to that of Figure 62, but for finding the rightmost 0-byte in a word = (zbyter(x)),
is [Mycro]:

Click here to view code image

(x — 0x01010101) & ~x & 0x80808080;
ntz (y) >> 3;

y
n

This executes in only five instructions exclusive of loading the constants if the machine has the and
not and number of trailing zeros instructions. It cannot be used to compute zbytel(x), because of a
problem with borrows. It would be most useful for finding the first 0-byte in a character string on a
little-endian machine, or to simply test for a 0-byte (using only the assignment to y) on a machine of
either endianness.

If the nlz instruction is not available, there does not seem to be any really good way to compute the
find first 0-byte function. Figure 6-3 shows a possibility (only the executable part of the code is
shown).

This executes in ten to 13 basic RISC instructions, ten in the all-nonzero case. Thus, it i1s probably



not as good as the code of Figure 61, although it does have fewer branch instructions. It does not
scale very well to 64-bit machines, unfortunately.

There are other possibilities for avoiding the nlz function. The value of v computed by the code of
Figure 63 consists of four bytes, each of which is either 0x00 or 0x80. The remainder after dividing
such a number by 0x7F is the original value with the up-to-four 1-bits moved and compressed to the
four rightmost positions. Thus, the remainder ranges from 0 to 15 and uniquely identifies the original
number. For example,

remu(0x80808080, 127) = 15,
remu(0x80000000, 127) = 8,

remu(0x00008080, 127) = 3, etc.

This value can be used to index a table, 16 bytes in size, to get the desired result. Thus, the code
beginning i+ (v -- o) can be replaced with

Click here to view code image
static char table[l6] = {4, 3, 2, 2, 1, 1, 1, 1,

o, 0, 0, 0, 0, 0, O, O}7
return tablel[y$%$127];

where v is unsigned. The number 31 can be used in place of 127, but with a different table.

Click here to view code image

¥ T

// Original byte: 00 80 other

y = (x & Ox7F7F7FTF) + Ox7F7F7FTF; // TF TF 1xXXXXXXX

y = ~(y | x | Ox7FTFT7FTF); // 80 00 00000000
// These steps map:

if (y == 0) return 4; // 00000000 ==> 4,
else if (y > O0x0000FFFF) // 80xxxxxx ==> 0,
return (y >> 31) *~ 1; // 0080xxxx ==> 1,
else // 000080xx ==> 2,
return (y >> 15) *~ 3; // 00000080 ==> 3.

FIGURE 6-3. Find leftmost 0-byte, not using n:-.

These methods involving dividing by 127 or 31 are really just curiosities, because the remainder
function is apt to require 20 cycles or more, even if directly implemented in hardware. However,
below are two more efficient replacements for the code in Figure 63 beginning with it (v = o):

Click here to view code image

return tablel[hopu(y, 0x02040810) & 15];
return table[y*0x00204081 >> 28];

Here, nopu(a, v denotes the high-order 32 bits of the unsigned product of = and ». In the second line,
we assume the usual HLL convention that the value of the multiplication is the low-order 32 bits of
the complete product. This might be a practical method, if either the machine has a fast multiply or the
multiplication by 0x204081 is done by shift-and-add’s. It can be done in four such instructions, as
suggested by



y(1+27+21% 422l =3 (1 +27)(1 +21%.

Using this 4-cycle way to do the multiplication, the total time for the procedure comes to 13 cycles (7
to compute y, plus 4 for the shift-and-add’s, plus 2 for the shift right of 28 and the table index), and
of course it is branch-free.

These scale reasonably well to a 64-bit machine. For the “modulus” method, use

Click here to view code image

return table[y%511];
where tav1e 18 of size 256, with values 8,0, 1,0,2,0,1,0,3,0,1,0,2,0, 1, 0, 4, ... (i.e., table(i] =
number of trailing 0’s in 7).

For the multiplicative methods, use either

return table[hopu(y, 0x02040810 20408100) & 255]; O
return table[ (y*0x00020408 10204081>>56];

where tavie 18 of size 256, with values 8, 7, 6, 6, 5,5,5,5,4,4,4,4,4,4,4,4,3, ....
The multiplication by 0x20408 10204081 can be done with

t, «<y(1+27)
t, « t,(1+21)

t; « t,(1+2%8)
which gives a 13-cycle solution.

All these variations using the table can, of course, implement the find rightmost 0-byte function by
simply changing the data in the table.

If the machine does not have the nor instruction, the not in the second assignment to y in Figure 63
can be omitted, in the case of a 32-bit machine, by using one of the three recurn statements given
above, with tanieri1 =0,0,0,0,0,0,0,0, 1, 1, 1, 1, 2, 2, 3, 4. This scheme does not quite work on a
64-bit machine.

Here is an interesting variation on the procedure of Figure 62, again aimed at machines that do not
have number of leading zeros. Let a, b, ¢, and d be 1-bit variables for the predicates “the first byte of
x 1s nonzero,” “the second byte of x 1s nonzero,” and so on. Then,

zbytel(x) =a + ab + abc + abcd.

The multiplications can be done with and’s, leading to the procedure shown in Figure 64 (only the
executable code 1s shown). This comes to 15 instructions on the basic RISC, which is not particularly
fast, but there is a certain amount of parallelism. On a superscalar machine that can execute up to
three arithmetic instructions in parallel, provided they are independent, it comes to only ten cycles.

Click here to view code image
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y = (x & OxT7FTFIFTF) + OxXT7FTETFIF;

y =vy | x; // Leading 1 on nonzero bytes.
tl =y >> 31; // tl = a.

t2 = (y >> 23) & tl; // t2 = ab.



t3 = (y >> 15) & t2; // t3 = abc.
td = (y > 7) & t3; // t4 = abcd.
return tl + t2 + t3 + t4;

FIGURE 6—4. Find leftmost 0-byte by evaluating a polynomial.
A simple variation of this does the find rightmost 0-byte function, based on

zbyter(x) = abcd + bed + cd + d.
(This requires one more and than the code of Figure 6-4.)

Some Simple Generalizations

Functions zbytel and zbyter can be used to search for a byte equal to any particular value, by first
exclusive or’ing the argument x with a word consisting of the desired value replicated in each byte

position. For example, to search x for an ASCII blank (0x20), search x © 0x 20202020 for a 0-byte.
Similarly, to search for a byte position in which two words x and y are equal, searchx @ y for a 0-
byte.
There is nothing special about byte boundaries in the code of Figure 6-2 and its variants. For
example, to search a word for a 0-value in any of the first four bits, the next 12, or the last 16, use the

code of Figure 62 with the mask replaced by 0x77FF7FFF [PHO]. (If a field length is 1, use a 0 in
the mask at that position.)

Searching for a Value in a Given Range

The code of Figure 6-2 can easily be modified to search for a byte in the range 0 to any specified
value less than 128. To illustrate, the following code finds the index of the leftmost byte having value
from 0 to 9:

Click here to view code image

y = (x & OX7FT7FTFTF) + 0x76767676;

y =Yy | x5

y =y | 0x7F7FTFTF; // Bytes > 9 are OxFF.
y = ~y; // Bytes > 9 are 0x00,

// bytes <= 9 are 0x80.

n nlz(y) >> 3;

More generally, suppose you want to find the leftmost byte in a word that is in the range a to b,
where the difference between a and b is less than 128. For example, the uppercase letters encoded in
ASCII range from 0x41 to 0x5A. To find the first uppercase letter in a word, subtract 0x41414141 in
such a way that the borrow does not propagate across byte boundaries, and then use the above code to
identify bytes having value from 0 to 0x19 (0x5A — 0x41). Using the formulas for subtraction given in
Section 2—18, “Multibyte Add, Subtract, Absolute Value ,” on page 40, with obvious simplifications
possible with y = 0x41414141, gives

Click here to view code image

x | 0x80808080) - 0x41414141;

((x | OxX7FTEFTETE) ~ d);

d & Ox7FT7FTFTEF) 4+ 0xX66660606606;
| d;
| O

(
(
y
% XTETETETE; // Bytes not from 41-5A are FF.
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y = ~Yi // Bytes not from 41-5A are 00,
// bytes from 41-5A are 80.
n = nlz(y) > 3;

For some ranges of values, simpler code exists. For example, to find the first byte whose value is
0x30 to 0x39 (a decimal digit encoded in ASCII), simply exclusive or the input word with
0x30303030 and then use the code given above to search for a value in the range 0 to 9. (This
simplification is applicable when the upper and lower limits have n high-order bits in common, and
the lower limit ends with 8 —n 0’s.)

These techniques can be adapted to handle ranges of 128 or larger with no additional instructions.
For example, to find the index of the leftmost byte whose value is in the range 0 to 137 (0x89), simply
change the liney - v | xt0 y - v « x in the code above for searching for a value from 0 to 9.

Similarly, changing the line y - v | a toy = vy « a in the code for finding the leftmost byte whose
value 1s in the range 0x41 to 0x5A causes it to find the leftmost byte whose value is in the range 0x41
to OxDA.

6—2 Find First String of 1-Bits of a Given Length

The problem here is to search a word in a register for the first string of 1-bits of a given length n or
longer, and to return its position, with some special indication if no such string exists. Variants are to
return only the yes/no indication and to locate the first string of exactly n 1-bits. This problem has
application in disk-allocation programs, particularly for disk compaction (rearranging data on a disk
so that all blocks used to store a file are contiguous). The problem was suggested to me by Albert
Chang, who pointed out that it is one of the uses for the number of leading zeros instruction.

We assume here that the number of leading zeros instruction, or a suitable subroutine for that
function, 1s available.

An algorithm that immediately comes to mind 1s to first count the number of leading 0’s and skip
over them by shifting left by the number obtained. Then count the leading 1’s by inverting and
counting leading 0’s. If this is of sufficient length, we are done. Otherwise, shift left by the number
obtained and repeat from the beginning. This algorithm might be coded as shown below. If n
consecutive 1-bits are found, it returns a number from 0 to 31, giving the position of the leftmost 1-bit
in the leftmost such sequence. Otherwise, it returns 32 as a “not found” indication.

Click here to view code image

int ffstrl (unsigned x, int n) {

int k, p;
p = 0; // Initialize position to return.
while (x != 0) {
k = nlz(x); // Skip over initial 0's
x = x << k; // (1f any).
p=pr + k;
k = nlz (~x); // Count first/next group of 1's.
if (k >= n) // If enough,
return p; // return.
x = x << k; // Not enough 1's, skip over
p=p + k; // them.

return 32;



This algorithm is reasonable if it is expected that the loop will not be executed very many times—
for example, if it is expected that » will have long sequences of 1’s and of 0’s. This might very well
be the expectation in the disk-allocation application. Its worst-case execution time, however, is not
very good; for example, about 178 full RISC instructions executed for x = 0x55555555 and n > 2.

An algorithm that is better in worst-case execution time is based on a sequence of shift left and and
instructions. To see how this works, consider searching for a string of eight or more consecutive 1-
bits in a 32-bit word x. This might be done as follows:

xe—x&(x<xl)
xe—x&(x<<2)

Xe—x&(x<<4d)

After the first assignment, the 1’s in x indicate the starting positions of strings of length 2. After the
second assignment, the 1°s in x indicate the starting positions of strings of length 4 (a string of length
2 followed by another string of length 2). After the third assignment, the 1’s in x indicate the starting
positions of strings of length 8. Executing number of leading zeros on this word gives the position of
the first string of length 8 (or more), or 32 if none exists.

To develop an algorithm that works for any length n from 1 to 32, we will look at this a little
differently. First, observe that the above three assignments can be done in any order. Reverse order
will be more convenient. To illustrate the general method, consider the case n = 10:

X <x &(x «<5)
X, X, & (x, << 2)
X; X, & (x, < 1)
XXy &(x;<<1)
The first statement shifts by n/2. After executing it, the problem is reduced to finding a string of

five consecutive 1-bits inx;. This can be done by shifting left by | 5/2 | = 2, and’ing, and searching

the result for a string of length 3 (5 — 2). The last two statements identify where the strings of length 3
are inx,. The sum of the shift amounts is always n— 1. The algorithm is shown in Figure 6-5. The

execution time ranges from 3 to 36 full RISC instructions, as » ranges from 1 to 32.

Click here to view code image

I 4

int ffstrl (unsigned x, int n) {
int s;

while (
S
X
n

return nlz (x);

FIGURE 6-5. Find first string of n 1’s, shift-and-and sequence.



If » is often moderately large, it is not unreasonable to unroll this loop by repeating the loop body
five times and omitting the testn > 1. (Five is always sufficient for a 32-bit machine.) This gives a
branch-free algorithm that runs in a constant time of 20 instructions executed (the last assignment to »
can be omitted). Although for small values of », the three assignments are executed more than
necessary, the result is unchanged by the extra steps, because variable » sticks at the value 1, and for
this value the three steps have no effect onx or». The unrolled version is faster than the looping
version for » > 5, in terms of number of instructions executed.

A string of exactly n 1-bits can be found in six more instructions (four if and not is available). The
quantity x computed by the algorithm of Figure 65 has 1-bits wherever a string of length n or more
1-bits begins. Hence, using the final value of x computed by that algorithm, the expression

x&-(xLD&-(x<1)
contains a 1-bit wherever the final x contains an isolated 1-bit, which is to say wherever the original
x began a string of exactly »n 1-bits.

The algorithm is also easily adapted to finding strings of length n that begin at certain locations.
For example, to find strings that begin at byte boundaries, simply and the final x with 0x80808080.

It can be used to find strings of 0-bits either by complementing x at the start, or by changing the
and’s to or’s and complementing x just before invoking nlz. For example, below is an algorithm for
finding the first (leftmost) 0-byte (see Section 61, “Find First 0-Byte,” on page 117, for a precise
definition of this problem).

xXex | (x<4)
xex | (x<2)
xex | (xx1)
x <« O0x7F7F7F7F | x
p < nlz(—=x)=3

This executes in 12 instructions on the full RISC (not as good as the algorithm of Figure 6-2 on page
118, which executes in eight instructions).

6—-3 Find Longest String of 1-Bits

The nicely concise function shown in Figure 66 returns the length of the longest string of 1-bits in x
[Hsieh].

Click here to view code image

I 4

int maxstrl (unsigned x) {
int k;
for (k = 0;, x ! = 0; k++) x = x & 2*x;
return k;

FIGURE 6—6. Find length of longest string of 1°s.

It executes in 4n + 3 instructions on the basic RISC, where n is the length of the longest string of



1’s, or 131 instructions in the worst case.

To reduce the worst-case execution time, a ‘“logarithmic” version is possible. It works by
propagating 0’s one, two, four, eight, and 16 positions to the left, stopping at the last nonzero word,
and then backtracking to find the length of the longest contiguous string of 1°s.

For example, suppose

Click here to view code image

x = 0011 1111 1111 0011 1111 0011 1111 1000

Then

Click here to view code image

x2 = 0011 1111 1110 0011 1110 0011 1111 0000
x4 = 0011 1111 1000 0011 1000 0011 1100 0O0O0O
x8 = 0011 1000 0000 0000 0000 0000 0000 0O0O0O
x16 = all 0's

In this case, the last nonzero word is xs. Observe that each 1-bit in xs indicates the leftmost position
of a string of eight 1°s. Thus, the longest string of 1°s begins at the leftmost position of a 1-bit in xs,
bit position 29 in the example. To test for a string of length 12, one can test the bit at position 21 (29 —
8) in x2. Since that 1s 0, there is no string of length 12. To test for a string of length 10, one can test the
bit at position 21 in x2. Since that is 1, position 29 is the start of a string of length 10 (or more). Last,
to test for a string of length 11, one can test the bit at position 19 (21 — 2) in =. Because that is 0, the
longest string 1s of length 10, and it starts at position 29.

This scheme is coded in Figure 67, except the code uses only two variables, x and y, instead of the
five variables x, x2, x4, xs, and x16. This code finds both the length and position of the longest string of
1’s, with the position being measured from the left end of the string. The scheme does not work if « is
0 or all 1’s. These are special-cased, with the latter possibility being handled in a place that is not
executed frequently.

Click here to view code image

T T

int fmaxstrl (unsigned x, int *apos) {
unsigned y;
int s;

if (x == 0) {*apos = 32; return 0;}
y = X & (x << 1);
if (y == 0) {s
X =y & (y << 2
if (x == 0) {s

= 1, goto L1;}
) ;
y = X & (x << 4);
) i

2; x = vy; goto L2;}

if (y == 0) {s
X =y & (y << 8
if (x == 0) {s 8; x = y; goto L8;}

if (x == O0xFFFF8000) {*apos = 0; return 32;}
s = 16;

4; goto L4;}
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if (y !'= 0) {s

Lid: y = x & (x << 2

if (y !'= 0) {s

L2: y = x & (x << 1

if (y !'= 0) {s

Ll: *apos = nlz(x);
return s;
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}
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FIGURE 6-7. Find length and position of longest string of 1’s.

The worst-case execution time on the basic RISC is 39 instructions, plus those required for the nlz
function. If only the length of the longest string of 1’s is wanted, there is no significant savings in
execution time, except for omitting the use of the nlz function.

6—4 Find Shortest String of 1-Bits

It is more difficult to find the shortest string of 1-bits in a word. One way to do it 1s to mark the
beginnings of all strings of 1’s in a word » and the ends of all such strings in a word <. Then, if» s < is
nonzero, the shortest string is of length 1. Otherwise, shift- left one position and test again. For
example, if

Click here to view code image

x = 0011 1111 1111 0011 1111 0011 1111 1000

then

Click here to view code image

0010 0000 0000 0010 0OOO 0010 00OOO 0OO0OO
0000 0000 0001 0000 0001 0000 0000 1000

b
e

After shiftinge left five places, » « e i1s nonzero. This means that the shortest string of 1-bits is of
length 6.

This idea is embodied in the code shown in Figure 6-8. As in the preceding material, the position
of the string is measured from the left, and if there are two or more minimal length strings of equal
length, this function finds the leftmost one. For example, if = = OXOOFFOFFO it returns length 8§,
position 8.

Click here to view code image

I 4

int fminstrl (unsigned x, int *apos) {

int k;
unsigned b, e; // Beginnings, ends.
if (x == 0) {*apos = 32; return 0;}
b =~(x>>1) & x; // 0-1 transitions.
e = x & ~(x << 1); // 1-0 transitions.
for (k = 1; (b & e) == 0; k++)

e = e << 1;
*apos = nlz(b & e);

return k;



FIGURE 6-8. Find length and position of shortest string of 1’s.

The function executes in 8 + 4 n instructions on the basic RISC (without andc), plus the time for the
nlz function, for n > 2, where # is the length of the shortest contiguous string of 1°s in x.

Perhaps the ultimate problem in this class is to find the length and position of the shortest string of
I’s inx that is at least as long as a given integer n> 0. In terms of the storage allocation problem, this
1s a “best fit” algorithm. This can be done by first left-propagating the 0’s in x by » — 1 positions and
then finding the shortest string of 1°s in the revised x. See the exercises.

Exercises

1. Code an elaboration of Hsieh’s algorithm that will find both the length and position of the
longest string of 1’s in a word x. You may use the nlz function.

2. Code a function for finding the length and position of the shortest string of 1’s in a word x that is
at least as long as a given integer n.

3. Another way to find the shortest string of 1’s in a word x is to successively turn off the rightmost
string of 1’s in x and observe the change in population count at each step. Code a function for
the full RISC that uses this idea and also finds the position of a shortest string of 1°s.

4. For “completely random” 32-bit words x (each bit independently O or 1 with probability 0.5),
what is the average number of strings of 1’s in x? The answer determines the average execution
time of the function of exercise 3, for such input data.

5. Again, for “completely random™ 32-bit words x, what is the average length of the shortest
contiguous string of 1’s inx? The answer determines the average execution time of function
fminstr1 1N Figure 68 for such input data. Compute this with a Monte Carlo or exhaustive
enumeration program.

6. Of the 2" binary words of length n, for how many is their shortest contained string of 1’s of
length 1? That is, how many n-bit words begin with 10, or end with 01, or contain the sequence
010? Find a closed-form solution or a recursion, not an exhaustive enumeration program.

7. Similarly, of the 2" binary words of length n, for how many is their shortest contained string of
1’s of length 2?



Chapter 7. Rearranging Bits and Bytes

7—-1 Reversing Bits and Bytes

By “reversing bits” we mean to reflect the contents of a register about the middle so that, for example,
rev(0x01234567) = 0xE6A2C480.

By “reversing bytes” we mean a similar reflection of the four bytes of a register. Byte reversal is a
necessary operation to convert data between the “little-endian” format used by DEC and Intel, and the
“big-endian” format used by most other manufacturers.

Bit reversal can be done quite efficiently by interchanging adjacent single bits, then interchanging
adjacent 2-bit fields, and so on, as shown below [Ausl]. These five assignment statements can be
executed in any order. This is the same algorithm as the first population count algorithm of Section
5—1, but with addition replaced with swapping.

Click here to view code image

X = (x & 0x55555555) <K< 1 | (x & OxXAAAAAAAA) >> 1;
X = (x & 0x33333333) << 2 | (x & 0OxCCCCCCcceC) >> 23
X = (x & OxOFOFOFOF) << 4 | (x & OxXFOFOFOFO) >> 4;
X = (x & OxOO0FFOOFF) << 8 | (x & OxFFOOFFO00) >> 8;
X = (x & OxO0000FFFF) << 16 | (x & OxFFFF0000) >> 16;

A small improvement may result on some machines by using fewer distinct large constants and
doing the last two assignments in a more straightforward way, as shown in Figure 7—1 (30 basic
RISC instructions, branch-free).

Click here to view code image

T 1

unsigned rev (unsigned x) {

x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555;
X = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333;
X = (x & O0xOFOFOFQOF) << 4 | (x >> 4) & OxOFOFOFOF;
X = (x << 24) | ((x & O0xFF00) << 8) |

((x >> 8) & OxXFFO00) | (x >> 24);

return x;

FIGURE 7—-1. Reversing bits.

The last assignment to x in this code does byte reversal in nine basic RISC instructions. If the
machine has rotate shifts, however, this can be done in seven instructions with

x « ((x & 0x00FFO00FF) 2 8) | ((x % 8) & 0x00FF00FF).

PowerPC can do the byte-reversal operation in only three instructions [Hayl]: a rotate left of 8,
which positions two of the bytes, followed by two “rlwimi” (rotate left word immediate then mask
insert) instructions.

The next algorithm, by Christopher Strachey [Strach 1961], is old by computer standards, but it is



instructive. It reverses the rightmost 16 bits of a word, assuming the leftmost 16 bits are clear at the
start, and places the reversed halfword in the left half of the register.

Its operation is based on the number of bit positions that each bit must move. The 16 bits, taken
from left to right, must move 1, 3, 5, ..., 31 positions. The bits that must move 16 or more positions
are moved first, then those that must move eight or more positions, and so forth. The operation is
illustrated below, where each letter denotes a single bit, and a period denotes a “don’t care” bit.

Click here to view code image

0000 0000 0000 0000 abcd efgh ijkl mnop Given

0000 0000 ijkl mnop abcd efgh .... .... After shl 16
0000 mnop ijkl efgh abcd .... .... .... After shl 8
0Oop mnkl ijgh efcd ab.. .... .... .... After shl 4
Opon mlkj ihgf edcb a... .... .... .... After shl 2
ponm 1lkji hgfe dcba .... .... .... .... After shl 1

Straightforward code consists of 16 basic RISC instructions, plus 12 to load the constants:

Click here to view code image

Xx =x | ((x & 0x000000FF) << 106);

x = (x & OxFOFOFOFO0) | ((x & OxOFOFOFOF) << 8);
x = (x & 0OxCCCCCCCC) | ((x & 0x33333333) << 4);
X = (x & OxAAAAAAAA) | ((x & 0x55555555) << 2);
x = x << 1;

Complementation can be used to reduce the number of distinct masks. By using more irregular
masks, the rightmost 16 bits can be preserved.

If rotate shifts are available, Strachey’s idea can be used to reverse a 32-bit word. The idea is to
consider how many bit positions each bit must move rotationally to the left to get to its final position.
Taking the bits from left to right, the shift amounts are 1, 3, 5, ..., 31, 1, 3, 5, ..., 31 (no bit moves an
even number of positions). The algorithm first rotate-moves those bits that must move 16 or more
positions, then those that must move eight or more positions, and so forth, and finally those that must
move one position (which is all of the bits, because all move amounts are odd). This scheme is
shown below, for reversing a 32-bit word «. Function sn1r (%, y) rotates x left y positions.

Click here to view code image

X = shlr(x & OxOOFFOOFF, 16) | x & ~0xOOFFOOQOFF;
X = shlr(x & OxOFOFOFOF, 8) | x & ~0xOFOFQOFOQOF;
X = shlr(x & 0x33333333, 4) | x & ~0x33333333;
X = shlr(x & 0x55555555, 2) | x & ~0x55555555;
x = shlr(x, 1);

The code uses and with complement to avoid loading some masks. If your machine does not have
that instruction, it can be avoided by rewriting the first line of code as

Click here to view code image

X = shlr(x, 16) & OxOOFFOOFF | x & ~0xOOFFOOQOFF;

which is a MUX operation, and using the identity
x&m|y&-—-m=((xDy)&m)Dy



to obtain

Click here to view code image

X = ((shlr(x, 16) * x) & OxO0FFOOFF) " x;

and similarly for the other lines that have and with complement.

A slightly better way for many machines, in that it has a little instruction-level parallelism, is to use
the identity [Karv]

x& —m=(x&m)Dx,
and common the and expression. This gives the function shown in Figure 7-2 (17 instructions, plus
eight to load constants, or 25 in all).

Click here to view code image

T T

unsigned rev (unsigned x) {
unsigned t;

t = x & 0xO0FFOOFF; x = shlr(t, 16) | t © x;
t = x & 0xOFOFOFOF; x = shlr(t, 8) | t © x;
t = x & 0x33333333; x = shlr(t, 4) | t © x;
t = x & 0x55555555; x = shlr(t, 2) | t ~ x;
X = shlr(x, 1);

return x;

FIGURE 7-2. Reversing bits with rotate shifts.

It i1s perhaps worth noting that the constants 0xXOOFFOOFF, 0xOFOFOFOF, and so on can be generated
one from another as shown below. This is not useful for 32-bit machines (it may even be harmful by
reducing parallelism), because 32-bit RISC machines generally can load the constants in two
instructions. But it might be useful for a 64-bit machine, for which it is illustrated.

C, < 0x00000000 FFFF FFFF
C, < C,®(Cy < 16)
C,« C, ®(C, <8)

Another way to reverse bits is to break the word up into three groups of bits, and swap the lefimost
and rightmost groups, leaving the center group in place [Baum]. For a 27-bit word, this works as
illustrated below.

Click here to view code image

012345678 9abcdefgh ijklmnopg The given 27-bit word
ijklmnopg 9abcdefgh 012345678 First ternary swap
opglmnijk fghcde%ab 678345012 Second ternary swap
gponmlkiji hgfedcba9 876543210 Third ternary swap

Straightforward code for this follows. If run on a 32-bit machine, it reverses bits 0 to 26, placing
the result in bit positions 0 to 26, and clearing bits 27 to 31.



Click here to view code image

X = (x & 0x000001FF) << 18 | (x & O0xO003FEOQ00) |
(x >> 18) & 0x000001FF;

X = (x & 0x001COEQ07) << 6 | (x & 0x00EQ7038) |
(x >> 6) & 0x001COEQ07;

X = (x & 0x01249249) << 2 | (x & 0x02492492) |
(x >> 2) & 0x01249249;

This amounts to 21 basic RISC instructions, plus 10 to load the constants, or 31 in all. In comparison,
the code of Figure 7—1 is 24 basic RISC instructions, plus six to load constants, plus a shift right of 5
to right-justify the result, or 31 in all. Thus, the ternary method is equal or superior when there are 27
or fewer bits to be reversed.

The next function, by Donald E. Knuth [Knu§], is interesting because it reverses a 32-bit word with
only four stages, and the shifting and masking steps are unexpectedly irregular. It uses one rotate shift
and three ternary swaps. It works as follows:

Click here to view code image

01234567 89abcdef ghijklmn opgrstuv Given

fghijklm nopgrstu v0123456 789%abcde Rotate left 15
pgrstuvm nofghijk labcdeb56 78901234 10-swap
tuvspgrm nojklifg hebcda96 78541230 4-swap
vutsrgpo mnlkjihg fedcba98 76543210 2-swap

Straightforward code is shown below.

Click here to view code image

// Rotateleft 15.
(x & O0x01COO03E0) |

X shlr(x, 15);

X = & 0x003F801F) << 10 |

(x
(x >> 10) & 0x003F801F;

X = (x & 0x0E038421) << 4 | (x & 0x11C439CE) |
(x >> 4) & 0x0E038421;

X = (x & 0x22488842) << 2 | (x & 0x549556B5) |
(x >> 2) & 0x22488842;

An improvement in operation count, at the expense of parallelism, results from rewriting

Click here to view code image

X = (x & Ml) << s | (x & M2) | (x >> s) & Ml;
where m2 1S ~ 1 | (a1 << s)), aS:
Click here to view code image

t = (x " (x > s8)) & Ml; x = (t | (t << 8)) * x;

This results in the code in Figure 7-3 (19 full RISC instructions, plus six to load constants, or 25 in
all).

Click here to view code image

T 1

unsigned rev (unsigned x) {
unsigned t;



x = shlr(x, 15); // Rotateleft 15.

t = (x © (x>>10)) & 0x003F801F; x = (t | (t<<10)) *~ x;
t = (x "~ (x>> 4)) & 0x0E038421; x = (t | (t<< 4)) ~ x;
t = (x N (x>> 2)) & 0x22488842; x = (t | (t<< 2)) *~ x;

FIGURE 7-3. Reversing bits, Knuth’s algorithm.

Although Knuth’s algorithm does not beat the algorithm shown in Figure 7-2 for reversing a 32-bit
quantity with rotate shifts allowed (17 instructions, plus eight to load constants), Knuth’s code uses
only one rotate shift instruction. If it is coded as

Click here to view code image

x = (x << 15) | (x >> 17); // Rotate left 15.

then Knuth’s algorithm is 21 instructions, plus six to load constants, which is the best found by these
measures for rotating a 32-bit word using only basic RISC instructions. This makes one wonder if
there is a simple way to predict the number of shifts and logical operations required to reverse a
word of a given length.

Can Knuth’s algorithm be extended to reversing 64 bits on a 64-bit machine? Yes, there 1s a simple
way and a way that is more difficult to work out. The simple way is to first swap the two halves of
the 64-bit register, and then apply the 32-bit version of Knuth’s algorithm to both halves, in parallel.
The resulting code is shown in Figure 7—4. It is 24 operations, if the swap (rotate 32) counts as one.

Click here to view code image

I 4

unsigned long long rev(unsigned long long x) {
unsigned long long t;

x << 32) | (x >> 32); // Swap register halves.

x & Ox0001lFFFFOOO1lFFFFLL) << 15 | // Rotate left
x & OxFFFEOOOOFFFEOOOOLL) >> 17; // 15.

(

(

(
t = (x ~ (x > 10)) & O0xO03F801F003F801FLL;
x = (t | (£t << 10)) * x;
t = (x ~ (x > 4)) & 0xOE0384210E038421LL;
x = (t | (t << 4)) * x;
t = (x ~ (x >> 2)) & 0x2248884222488842LL;
x = (Lt | (£ << 2)) " x;
return x;

FIGURE 7—4. Knuth’s algorithm applied to 64 bits.

The other way is to find shift amounts and masks analogous to those used in Knuth’s 32-bit reversal
algorithm. This is shown below. It is 25 operations, if the rotate left shift of 31 positions counts as
one operation.

Click here to view code image

unsigned long long rev(unsigned long long x) {
unsigned long long t;



x = (x << 31) | (x >> 33); // I.e., shlr(x, 31).
t = (x ~ (x >> 20)) & 0xO00000FFF800007FFLL;

x = (t | (t << 20)) "~ x;

t = (x " (x > 8)) & 0xO0F8000F80700807LL;

x = (t | (t << 8)) * x;

t = (x "~ (x >> 4)) & 0x0808708080807008LL;

x = (t | (t << 4)) "~ x;

t = (x " (x> 2)) & O0x11111111111111111LL;

x = (t | (t << 2)) * x;

return x;

Bit reversal can be aided by table lookup. The code that follows reverses a byte at a time, using a
256-byte table, and accumulates in reverse order the four bytes selected from the table. If the loop is
strung out, this amounts to 13 basic RISC instructions, plus four loads, so it could be a winner on
some machines.

Click here to view code image

unsigned rev (unsigned x) {

static unsigned char table[256] = {0x00, 0x80, 0x40,
0xC0, 0x20, 0OxAO0, 0Ox60, OxEO, ..., OxBF, O0x7F, OxFF};
int 1i;

unsigned r;

r = 0;

for (1 = 3; i >= 0; i--) {
r = (r << 8) + table[x & OxFF];
X = x >> 8;

}

return r;

}

Generalized Bit Reversal

[GLS1] suggests that the following sort of generalization of bit reversal, which he calls “flip,” is a
good candidate to consider for a computer’s instruction set:

Click here to view code image

if (k & 1) x = (x & 0x55555555) << 1 | (x & OxAAAAAAADL) >> 1;
if (k & 2) x = (x & 0x33333333) << 2 | (x & 0OxCCcCcccece) >>  2;
if (k & 4) x = (x & OxXOFOFOFOF) << 4 | (x & OxFOFOFOFO) >> 4;
if (k & 8) x = (x & O0xO00FFOOFF) << 8 | (x & OxFFOOFF00) >> 8;
if (k & 16) x = (x & OxO0000FFFF) << 16 | (x & OxFFFF0000) >> 1lo;

(The last two and operations can be omitted.) For x = 31, this operation reverses the bits in a word.
For x = 24, it reverses the bytes in a word. For x = 7, it reverses the bits in each byte, without
changing the positions of the bytes. For « = 16, it swaps the left and right halfwords of a word, and so
on. In general, it moves the bit at position m to positionm @ k. It can be implemented in hardware
very similarly to the way a rotate shifter is usually implemented (five stages of MUX’s, with each
stage controlled by a bit of the shift amount k).



Bit-Reversing Novelties

Item 167 in [HAK] contains rather esoteric expressions for reversing 6-, 7-, and 8-bit integers.
Although these expressions are designed for a 36-bit machine, the one for reversing a 6-bit integer
works on a 32-bit machine, and those for 7- and 8-bit integers work on a 64-bit machine. These
expressions are as follows:

6-bit: remu((x * 0x00082082) & 0x01122408, 255)
7-bit: remu((x * 0x40100401) & 0x4 42211008, 255)

8-bit: remu((x * 0x202020202) & 0x108 84422010, 1023)
The result of all these is a “clean” integer—right-adjusted with no unused high-order bits set.

In all these cases the remu function can instead be rem or mod, because its arguments are positive.
The remainder function is simply summing the digits of a base-256 or base-1024 number, much like
casting out nines. Hence, it can be replaced with a multiply and a shift right. For example, the 6-bit

formula has the following alternative on a 32-bit machine (the multiplication must be modulo 23?):
t < (x * 0x00082082) & 0x01122408

(¢ * 0x01010101) = 24

These formulas are limited in their utility, because they involve a remaindering operation (20
cycles or more) and/or some multiplications, as well as loading of large constants. The formula
immediately above requires ten basic RISC instructions, two of which are multiply’s, which amounts
to about 20 cycles on a present-day RISC. On the other hand, an adaptation of the code of Figure 7—1
to reverse 6-bit integers requires about 15 instructions, and probably about 9 to 15 cycles, depending
on the amount of instruction-level parallelism in the machine. These techniques, however, do give
compact code. Below are a few more techniques that might possibly be useful, all for a 32-bit
machine. They involve a sort of double application of the idea from [HAK], to extend the technique to
8- and 9-bit integers on a 32-bit machine.

The following is a formula for reversing an 8-bit integer:

§ < (x + 0x02020202) & 0x84422010

t « (x * 8) & 0x00000420

remu(s + ¢, 1023)

Here the remu cannot be changed to a multiply and shift. (You have to work these out, and look at the
bit patterns, to see why.)

Here is a similar formula for reversing an 8-bit integer, which is interesting because it can be
simplified quite a bit:

5 < (x = 0x00020202) & 0x01044010

t < (x * 0x00080808) & 0x02088020

remu(s + £, 4095)
The simplifications are that the second product is just a shift left of the first product, the last mask



can be generated from the second with just one instruction (shift), and the remainder can be replaced
by a multiply and shift. It simplifies to 14 basic RISC instructions, two of which are multiply’s:

u < x = 0x00020202

m « 0x01044010

Se—u&m

te—(u<<2)&(m<1)

(0x01001001 (s + 1)) = 24
The following is a formula for reversing a 9-bit integer:

5 < (x + 0x01001001) & 0x84108010

t < (x + 0x00040040) & 0x00841080

remu(s + ¢, 1023)

The second multiplication can be avoided, because the product is equal to the first product shifted
right six positions. The last mask is equal to the second mask shifted right eight positions. With these
simplifications, this requires 12 basic RISC instructions, including the one multiply and one

remainder. The remainder operation must be unsigned, and it cannot be changed to a multiply and
shift.

The reader who studies these marvels will be able to devise similar code for other bit-permuting
operations. As a simple (and artificial) example, suppose it is desired to extract every other bit from
an 8-bit quantity and compress the four bits to the right. That is, the desired transformation is

Click here to view code image

0000 0000 0000 0000 0000 0000 abcd efgh ==>
0000 0000 0000 0000 0000 0000 0000 bdfh

This can be computed as follows:
f< (x*0x01010101) & 0x40100401

(f = 0x08040201) = 27

On most machines, the most practical way to do all these operations is by indexing into a table of
1-byte (or 9-bit) integers.

Incrementing a Reversed Integer

The Fast Fourier Transform (FFT) algorithm employs an integer i and its bit reversal rev(i) in a loop
in whichi 1s incremented by 1 [PuBr]. Straightforward coding would increment i and then compute
rev(i) on each loop iteration. For small integers, computing rev(i) by table lookup is fast and
practical. For large integers, however, table lookup is not practical and, as we have seen, computing
rev(i) requires some 29 instructions.

If table lookup cannot be used, it is more efficient to maintaini in both normal and bit-reversed
forms, incrementing them both on each loop iteration. This raises the question of how best to
increment an integer that is in a register in reversed form. To illustrate, on a 4-bit machine we wish to



successively step through the values (in hexadecimal)

Click here to view code image

In the FFT algorithm, i and its reversal are both some specific number of bits in length, almost
certainly less than 32, and they are both right-justified in the register. However, we assume here that i
i1s a 32-bit integer. After adding 1 to the reversed 32-bit integer, a shift right of the appropriate
number of bits will make the result usable by the FFT algorithm (both i and rev(i) are used to index
an array in memory).

The straightforward way to increment a reversed integer is to scan from the left for the first 0-bit,
setit to 1, and set all bits to the left of it (if any) to 0’s. One way to code this is

Click here to view code image

unsigned x, m;

m 0x80000000;
X x N m;
if ((int)x >= 0) {

do {
m=m >> 1;
X = xXx "~ m;

} while (x < m);
}

This executes in three basic RISC instructions ifx begins with a 0-bit, and four additional
instructions for each loop iteration. Because = begins with a 0-bit half the time, with 10 (binary) one-
fourth of the time, and so on, the average number of instructions executed is approximately
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In the second line we added and subtracted 1, with the first 1 in the form 1/2 + 1/4 + 1/8 + 1/16 +
.... This makes the series similar to the one analyzed on page 113. The number of instructions
executed in the worst case, however, is quite large (131).

If number of leading zeros is available, adding 1 to a reversed integer can be done as follows:
First execute: 5 < nlz(—x)
and then either:  x < x @ (0x80000000 = s)

or:  x « ((x <)+ 0x80000000) % s

Either method requires five full RISC instructions and, to properly wrap around from OxFFFFFFFF to
0, requires that the shifts be modulo 64. (These formulas fail in this respect on the Intel x86 machines,



because the shifts are modulo 32.)

The rather puzzling one-liner below [Mobi] increments a reversed integer in six basic RISC
instructions. It is free of branches and loads but includes an integer division operation. It works for
integers of length up to that of the word size of the machine, less 1.

rew‘{—revi@(m— - 'm )
(i®(+1))+1
To use this, both the non-reversed integer i and its reversal revi must be available. The variable m
1s the modulus; if we are dealing with n-bit integers, then m = 2". Applying the formula gives the next
value of the reversed integer. The non-reversed integer i would be incremented separately. The
reversed integer is incremented “in place’; that 1s, it is not shifted to the high-order end of the
register, as in the two preceding methods.

A variation is

rtzvi(—revi@(m—m—ﬂ)], (1)
—i & (i +1

which executes in five instructions if the machine has and not, and if m is a constant so that the
calculation of m / 2 does not count. It works for integers of length up to that of the word size of the
machine. (For full word-size integers, use 0 for the first occurrence of m in the formula, and 2"/ for

m/2.)

7-2 Shuffling Bits

Another important permutation of the bits of a word 1s the “perfect shuffle” operation, which has
applications in cryptography. There are two varieties, called the “outer” and “inner” perfect shuffles.
They both interleave the bits in the two halves of a word in a manner similar to a perfect shuffle of a
deck of 32 cards, but they differ in which card is allowed to fall first. In the outer perfect shuftle, the
outer (end) bits remain in the outer positions, and in the inner perfect shuffle, bit 15 moves to the left
end of the word (position 31). If the 32-bit word is (where each letter denotes a single bit)

Click here to view code image

abcd efgh ijkl mnop ABCD EFGH IJKL MNOP,
then after the outer perfect shuffle it is

Click here to view code image

aAbB cCdD eEfF gGhH iIjJ kK1L mMnN oOpP,
and after the inner perfect shuftle it is

Click here to view code image

AaBb CcDd EeFf GgHh IiJj KkL1 MmNn OoPp.

Assume the word size W is a power of 2. Then the outer perfect shuffle operation can be
accomplished with basic RISC instructions in logy,(W / 2) steps, where each step swaps the second

and third quartiles of successively smaller pieces [GLS1]. That is, a 32-bit word is transformed as



follows:

Click here to view code image

abcd efgh ijkl mnop ABCD EFGH IJKL MNOP
abcd efgh ABCD EFGH ijkl mnop IJKL MNOP
abcd ABCD efgh EFGH ijkl IJKL mnop MNOP
abAB cdCD efEF ghGH ijIJ k1KL mnMN opOP
aAbB cCdD eEfF gGhH iIjJ kK1L mMnN oOpP

Straightforward code for this is

Click here to view code image

x = (x & O0xO0000FF00) << 8 | (x >> 8) & 0x0000FFO00 | x & OxFFOOOOFF;
x = (x & O0xO0FO000F0) << 4 | (x >> 4) & O0xO0FOO00FO0 | x & OxFOOFFOOF;
x = (x & 0x0COCOCOC) << 2 | (x >> 2) & 0x0C0OCOCOC | x & 0xC3C3C3C3;
X = (x & 0x22222222) << 1 | (x >> 1) & 0x22222222 | x & 0x99999999;

which requires 42 basic RISC instructions. This can be reduced to 30 instructions, although at an
increase from 17 to 21 cycles on a machine with unlimited instruction-level parallelism, by using the
exclusive or method of exchanging two fields of a register (described on page 47). All quantities are
unsigned:

Click here to view code image

t = (x * (x > 8)) & 0xO0000FF00; x = x ~ t ©~ (t << 8):;
t = (x " (x > 4)) & 0xO00F000F0; x = x ~ t ©~ (t << 4);
t = (x "~ (x > 2)) & 0x0C0OCOCOC; x =x "~ t ~ (t << 2);
t = (x " (x >> 1)) & 0x22222222; x = x ~ t ~ (t << 1);

The inverse operation, the outer unshuffle, is easily accomplished by performing the swaps in
reverse order:

Click here to view code image

t = (x " (x >> 1)) & 0x22222222; x =x ~ t ~ (t << 1);
t = (x " (x >> 2)) & 0x0COCOCOC; x = x ~ t 7~ (t << 2);
t = (x * (x > 4)) & 0xO00F000F0; x = x ~ t ©~ (t << 4);
t = (x " (x > 8)) & 0xO000FF00; x = x ~ t ~ (t << 8);

Using only the last two steps of either of the above two shuffle sequences shuffles the bits of each
byte separately. Using only the last three steps shuffles the bits of each halfword separately, and so
on. Similar remarks apply to unshuffling, except by using the first two or three steps.

To get the inner perfect shuffle, prepend to these sequences a step to swap the left and right halves
of the register:

Click here to view code image
x = (x >> 16) | (x << 16);

(or use a rotate of 16 bit positions). The unshuffle sequence can be similarly modified by appending
this line of code.



Altering the transformation to swap the first and fourth quartiles of successively smaller pieces
produces the bit reversal of the inner perfect shuffle.

Perhaps worth mentioning is the special case in which the left half of the word « 1s all 0. In other
words, we want to move the bits in the right half of x to every other bit position—that is, to transform
the 32-bit word

Click here to view code image

0000 0000 0000 0000 ABCD EFGH IJKL MNOP
to

Click here to view code image

OAO0B 0COD OEOF OGOH 0IOJ OKOL OMON 0OOP.

The outer perfect shuffle code can be simplified to do this task in 22 basic RISC instructions. The
code below, however, does it in only 19, at no cost in execution time on a machine with unlimited
instruction-level parallelism (12 cycles with either method). This code does not require that the left
half of word x be initially cleared.

Click here to view code image

X = ((x & OxFF00) << 8) | (x & OxOOFF);
X = ((x << 4) | x) & O0xOFOFOFOF;
X = ((x << 2) | x) & 0x33333333;
X = ((x << 1) | x) & 0x55555555;

Similarly, for the inverse of this “half shuffle” operation (a special case of compress; see page
150), the outer perfect unshuffle code can be simplified to do the task in 26 or 29 basic RISC
instructions, depending on whether or not an initial and operation is required to clear the bits in the
odd positions. The code below, however, does it in only 18 or 21 basic RISC instructions, and with
less execution time on a machine with unlimited instruction-level parallelism (12 or 15 cycles).

Click here to view code image

x = x & 0x55555555; // (If required.)
x = ((x >> 1) | x) & 0x33333333;
x = ((x > 2) | x) & O0xOFOFOFOF;
X = ((x >> 4) | x) & O0xOO0FFOOFF;
X = ((x >> 8) | x) & O0xO000FFFF;

7-3 Transposing a Bit Matrix

The transpose of a matrix 4 is a matrix whose columns are the rows of 4 and whose rows are the
columns of A. Here we consider the problem of computing the transpose of a bit matrix whose
elements are single bits that are packed eight per byte, with rows and columns beginning on byte
boundaries. This seemingly simple transformation is surprisingly costly in instructions executed.

On most machines it would be very slow to load and store individual bits, mainly due to the code
that would be required to extract and (worse yet) to store individual bits. A better method is to
partition the matrix into 8x8 submatrices, load each 8x8 submatrix into registers, compute the
transpose of the submatrix in registers, and then store the 8x8 result in the appropriate place in the
target matrix. Figure 7-5 illustrates the transposition of a bit matrix of size 2x3 bytes. 4, B, ..., F are



submatrices of size 88 bits. 47, BT, ... denote the transpose of submatrices 4, B, ....
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FIGURE 7-5. Transposing a 16x24-bit matrix.

For the purposes of transposing an 8x8 submatrix, it doesn’t matter whether the bit matrix is stored
in row-major or column-major order; the operations are the same ineither event. Assume for
discussion that it’s in row-major order. Then the first byte of the matrix contains the top row of 4, the
next byte contains the top row of B, and so on. If L denotes the address of the first byte (top row) of a
submatrix, then successive rows of the submatrix are at locations L +n, L + 2n, ..., L + 7n.

For this problem we will depart from the usual assumption of a 32-bit machine and assume the
machine has 64-bit general registers. The algorithms are simpler and more easily understood in this
way, and it is not difficult to convert them for execution on a 32-bit machine. In fact, a compiler that
supports 64-bit integer operations on a 32-bit machine will do the work for you (although probably
not as effectively as you can do by hand).

The overall scheme is to load a submatrix with eight load byte instructions and pack the bytes left-
to-right into a 64-bit register. Then the transpose of the register’s contents is computed. Finally, the
result is stored in the target area with eight store byte instructions.

The transposition of an 8x8 bit matrix 1s illustrated here, where each character represents a single
bit.

0123 4567 08go wEMU
89ab cdef 19hp XFNV
ghij klmn 2aig yGOW
opgr stuv — 3bjr zHPX
wxyz ABCD 4cks AIQY
EFGH IJKL 5dlt BJRE
MNOP QRST 6emu CKS$
UVWX YZS. 7fnv DLT.

In terms of doublewords, the transformation to be done is to change the first line to the second line
below.

Click here to view code image

01234567 89%abcdef ghijklmn opgrstuv wxyzABCD EFGHIJKL MNOPQRST UVWXYZS.
08g0wEMU 19hpxFNV 2aiqyGOW 3bjrzHPX 4cksAIQY 5d1tBJRZ 6emuCKS$S 7fnvDLT.

Notice that the bit denoted by 1 moves seven positions to the right, the bit denoted by 2 moves 14
positions to the right, and the bit denoted by 8 moves seven positions to the left. Every bit moves 0, 7,

14, 21, 28, 35, 42, or 49 positions to the left or right. Since there are 56 bits in the doubleword that
have to be moved and only 14 different nonzero movement amounts, an average of about four bits can



be moved at once, with appropriate masking and shifting. Straightforward code for this follows.

Click here to view code image

0x8040201008040201LL
0x0080402010080402LL)
0x0000804020100804LL)
0x0000008040201008LL)
0x0000000080402010LL) << 28
)
)

b

22 2 22 22 &2 2

y:
<< 7

<< 14
<< 21

0x0000000000804020LL) << 35
0x0000000000008040LL

|
(x |
(x |
(x |
(x |
(x |
(x << 42 |
(x & 0x0000000000000080LL) << 49 |
(x >> 7) & 0x0080402010080402LL |
(x >> 14 0x0000804020100804LL |
(x 0x0000008040201008LL |
(x 0x0000000080402010LL |
(x 0x0000000000804020LL |
(x 0x0000000000008040LL |
(x

0x0000000000000080LL;

)
>> 21)
>> 28)
>> 35)
>> 42)
>> 49)

2 2 2y &2 & 2

This executes in 43 instructions on the basic RISC, exclusive of mask generation (which is not
important in the application of transposing a large bit matrix, because the masks are loop constants).
Rotate shifts do not help. Some of the terms are of the form x s masx)<< s, and some are of the form («
>> s)s mask. This reduces the number of masks required; the last seven are repeats of earlier masks.
Notice that each mask after the first can be generated from the first with one shift right instruction.
Because of this, it is a simple matter to write a more compact version of the code that uses a for-loop
that 1s executed seven times.

Another variation is to employ Steele’s method of using exclusive or to swap bit fields (described
on page 47). That technique does not help much in this application. It results in a function that
executes in 42 instructions, exclusive of mask generation. The code starts out

Click here to view code image

t = (x 7 (x> 7)) & 0x0080402010080402LL;
X =x "t " (t << 7T);

and there are seven such pairs of lines.

Although there does not seem to be a really great algorithm for this problem, the method to be
described beats the straightforward method and its variations described above by approximately a
factor of 2 on the basic RISC, for the calculation part (not counting loading and storing the
submatrices or generating masks). The method gets its power from its high level of bit-parallelism. It
would not be a good method if the matrix elements are words. For that, you can’t do better than
loading each word and storing it where it goes.

First, treat the 8x8-bit matrix as 16 2x2-bit matrices and transpose each of the 16 2x2-bit matrices.
Then treat the matrix as four 2x2 submatrices whose elements are 2x2-bit matrices and transpose
each of the four 2x2 submatrices. Finally, treat the matrix as a 2x2 matrix whose elements are 4x4-bit
matrices and transpose the 2x2 matrix. These transformations are illustrated below [Floyd].



0123 4567 082a 4cée 08go 4cks 08go wEMU

89ab cdef 193b 5d47f 19hp 5dlt 19hp xXFNV
ghij klmn goiqg ksmu 2aig 6emu 2aiq yGOW
opgr stuv — hpjr ltnv — 3bjr 7fnv — 3bjr zHPX
wxyz ABCD wEyG AICK wEMU AIQY 4cks AIQY
EFGH IJEL xFzH BJDL XFNV BJRZ 5d1t BJREZ
MNOP QRST MUOW QYSS$ yGOW CEKSS$ 6emu CEKSS
UVWX YZS. NVPX REZT. zHPX DLT. 7fnv DLT.

A complete procedure is shown in Figure 7—6. Parameter » is the address of the first byte of an 8x8
submatrix of the source matrix, and parameter = is the address of the first byte of an 8x8 submatrix in
the target matrix.

The calculation part of this function executes in 21 instructions. Each of the three major steps is
swapping bits, so a version can be written that uses the Steele exclusive or bit field swapping device.
Using it, the first assignment to x in Figure 7—6 becomes:

Click here to view code image

t = (x " (x> 7)) & 0xO0AAOOAAOOAAQOAALL;
x Mt N (t << T);

The calculation part of the revised function executes in only 18 instructions, but it has no instruction-
level parallelism.

The algorithm of Figure 7—6 runs from fine to coarse granularity, based on the lengths of the groups
of bits that are swapped. The method can also be run from coarse to fine granularity. To do this, first
treat the 8x8-bit matrix as a 2x2 matrix whose elements are 4x4-bit matrices and transpose the 2x2
matrix. Then, treat each of the four 4x4 submatrices as a 2X2 matrix whose elements are 2x2-bit
matrices, and transpose each of the four 2x2 submatrices, and so forth. The code for this is the same
as that of Figure 7—6 except for the three assignments that do the bit rearranging being run in reverse
order.

Click here to view code image

T 1

void transpose8 (unsigned char A[8], int m, int n,
unsigned char B[8]) {
unsigned long long x;
int 1i;

for (i = 0; 1 <= 7; i++) // Load 8 bytes from the
x = x << 8 | A[m*i]; // input array and pack
// them into x.

x = x & OxAA55AA55AA55AA55LL |

(x & O0xO0OAAOOAAOOAAOO0AALL) << 7 |
(x >> 7) & O0xO0AAOOAAOOAAQOQOAALL;

x = x & 0xCCCC3333CCCC3333LL |
(x & 0x0000CCCCO000OCCCCLL) << 14 |
(x >> 14) & 0x0000CCCCO000CCCCLL;

x = x & OxFOFOFOFOOFOFOFOFLL |
(x & O0xO00000000FOFOFOFOLL) << 28 |
(x >> 28) & 0xO00OOOOOFOFOFOFOLL;



0; 1i--) | // Store result into
= x >> 8;} // output array B.

FIGURE 7-6. Transposing an 8x8-bit matrix.

As was mentioned, these functions can be modified for execution on a 32-bit machine by using two
registers for each 64-bit quantity. If this is done and any calculations that would result in zero are
used to make obvious simplifications, the results are that a 32-bit version of the straightforward
method described on page 143 runs in 74 instructions (compared to 43 on a 64-bit machine), and a
32-bit version of the function of Figure 7—6 runs in 36 instructions (compared to 21 on a 64-bit
machine). Using Steele’s bit-swapping technique gives a reduction in instructions executed at the
expense of instruction-level parallelism, as in the case of a 64-bit machine.

Transposing a 32x32-Bit Matrix
The same recursive technique that was used for the 8x8-bit matrix can be used for larger matrices.
For a 32x32-bit matrix it takes five stages.

The details are quite different from Figure 7-6, because here we assume that the entire 32x32-bit
matrix does not fit in the general register space, and we seek a compact procedure that indexes the
appropriate words of the bit matrix to do the bit swaps. The algorithm to be described works best if
run from coarse to fine granularity.

In the first stage, treat the matrix as four 16x16-bit matrices, and transform it as follows:

4B 4C|
&b B D
A denotes the left half of the first 16 words of the matrix, B denotes the right half of the first 16 words,

and so on. It should be clear that the above transformation can be accomplished by the following
swaps:

Right half of word 0 with the left half of word 16,
Right half of word 1 with the left half of word 17,

Right half of word 15 with the left half of word 31.

To implement this in code, we will have an index k that ranges from 0 to 15. In a loop controlled by
k, the right half of word &k will be swapped with the left half of word £ + 16.

In the second stage, treat the matrix as 16 8x8-bit matrices, and transform it as follows:

A BCBH AECG
EFGH B FDH

[ JKLl |IMKO|
MNOP| |JNLP|
This transformation can be accomplished by the following swaps:

Bits 0OxO0FFOOFF of word 0 with bits OXFFOOFF00 of word 8,
Bits 0xO0OFFOOFF of word 1 with bits OXFFOOFF00 of word 9, and so on.




This means that bits 0—7 (the least significant eight bits) of word 0 are swapped with bits 815 of
word 8, and so on. The indexes of the first word in these swaps are k=0, 1, 2, 3,4, 5,6, 7, 16, 17,
18,19, 20, 21, 22, 23. A way to step k through these values is

k' = (k+9)& 8.
In the loop controlled by £, bits of word & are swapped with bits of word £ + 8.
Similarly, the third stage does the following swaps:

Bits 0xOFOFOFOF of word 0 with bits OxFOFOFOFO of word 4,
Bits OxOFOFOFOF of word 1 with bits OXFOFOFOFO of word 5, and so on.

The indexes of the first word in these swaps are k=0, 1, 2, 3, 8,9, 10, 11, 16, 17, 18, 19, 24, 25, 26,
27. A way to step k through these values is

k' = (k+5)& 4.
In the loop controlled by £, bits of word & are swapped with bits of word & + 4.

These considerations are coded rather compactly in the C function shown in Figure 7—7 [GLS1].
The outer loop controls the five stages, with 5 taking on the values 16, 8, 4, 2, and 1. It also steps the
mask n through the values 0x0000FFFF, 0xO0FFOOFF, 0xOFOFOFOF, 0x33333333, and 0x55555555.
(The code for this, n - n ~ m << 5), 1s a nice little trick. It does not have an inverse, which is the main
reason this code works best for coarse to fine transformations.) The inner loop steps k£ through the
values described above. The inner loop body swaps the bits of ax; identified by mask » with the bits
of a1x+31 shifted right s and identified by », which is equivalent to the bits of ax+31 identified with the
complement of n. The code for performing these swaps i1s an adaptation of the “three exclusive or”
technique shown on page 46 column (c).

Click here to view code image

void transpose32 (unsigned A[32]) {
int j, k;
unsigned m, t;

m = O0xO0000FFFF;

for (j = 16; J '=0; 3 =3 > 1, m=m" (m<<7j)) {
for (k= 0; k<32; k= (k+ 73 +1) & ~3) {
t = (Alk] ~ (A[k+3] >> J)) & m;
Alk] = A[k] "~ t;
A[k+J] = A[k+]] ©~ (t << 3J)

FIGURE 7-7. Compact code for transposing a 32x32-bit matrix.

Based on compiling this function with the GNU C compiler to a machine very similar to the basic
RISC, this compiles into 31 instructions, with 20 in the inner loop, and 7 in the outer loop but not in
the inner loop. Thus, it executes in4 + 5(7 + 16 - 20) = 1639 instructions. In contrast, if this function
were performed using 16 calls on the 8x8 transpose program of Figure 7—6 (modified to run on a 32-
bit machine), then it would take 16(101 + 5) = 1696 instructions, assuming the 16 calls are “strung
out.” This includes five instructions for each function call (observed in compiled code). Therefore,



the two methods are, on the surface anyway, very nearly equal in execution time.

On the other hand, for a 64-bit machine the code of Figure 7—7 can easily be modified to transpose
a 64x64-bit matrix, and it would take about 4 + 6(7 + 32 - 20) = 3886 instructions. Doing the job
with 64 executions of the 8x8 transpose method would take about 64(85 + 5) = 5760 instructions.

The algorithm works in place, and thus if it 1s used to transpose a larger matrix, additional steps
are required to move 32x32-bit submatrices. It can be made to put the result matrix in an area distinct
from the source matrix by separating out either the first or last execution of the “for j-loop” and
having it store the result in the other area.

About half the instructions executed by the function of Figure 7-7 are for loop control, and the
function loads and stores the entire matrix five times. Would it be reasonable to reduce this overhead
by unrolling the loops? It would, if you are looking for the ultimate in speed, if memory space is not a
problem, if your machine’s I-fetching can keep up with a large block of straight-line code, and
especially if the branches or loads are costly in execution time. The bulk of the program will be the
six instructions that do the bit swaps repeated 80 times (5 - 16). In addition, the program will need 32
load 1nstructions to load the source matrix and 32 store instructions to store the result, for a total of at
least 544 instructions.

Figure 7-8 outlines a program in which the unrolling is done by hand. This program is shown as
not working in place, but it executes correctly in place, if that is desired, by invoking it with identical
arguments. The number of “swap” lines is 80. Our GNU C compiler for the basic RISC machine
compiles this into 576 instructions (branch-free, except for the function return), counting prologs and
epilogs. This machine does not have the store multiple and load multiple instructions, but it can save
and restore registers two at a time with store double and load double instructions.

Click here to view code image
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#define swap(al, al, j, m) t = (a0 ~ (al >>j)) & m; \
a0 = a0 ~ t; \
al = al ~ (t << 3);

void transpose32 (unsigned A[32], unsigned B[32]) {

unsigned m, t;

unsigned a0, al, a2, a3, a4, ab5, a6, a7,
a8, a9, al0, all, al2, al3, al4d, alb5,
ale, al7, al8, al9, a20, a2l, a22, a23,
a24, a25, a26, a2’7, a28, a29, a30, a3l;

a0
a4

0]; al
A[ 4]1; a5

; a2
A[ 5]; a6

2]1; a3
A[ 6]1; a7

I
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([
p
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a28 = A[28]; a29 = A[29]; a30 = A[30]; a3l = A[31];

m = 0xO0000FFFF;
swap (a0, al6, 16, m)
swap(al, al7, 16, m)

swap (al5, a3l, 16, m)
m = O0xOOFFOOFF;

swap (a0, a8, 8, m)
swap(al, a9, 8, m)



swap (a28, a29, 1, m)
swap (a30, a31l, 1, m)

B[ 0] = a0; B[ 1] = al B[ 2] = a2 B[ 3] = a3;
B[ 4] = a4; B[ 5] = ab B[ 6] = a6 B[ 7] = a7;
B[é8] = a28; BJ[29] = a29; B[30] = a30; BJ[31l] = a31;

FIGURE 7-8. Straight-line code for transposing a 32x32-bit matrix.

There is a way to squeeze a little more performance out of this if your machine has a rotate shift
instruction (either left or right). The idea is to replace all the swap operations of Figure 7—8, which
take six instructions each, with simpler swaps that do not involve a shift, which take four instructions
each (use the swap macro given, with the shifts omitted).

First, rotate right words 4[16..31] (that is, A[k] for 16 <k < 131) by 16 bit positions. Second,
swap the right halves of 4[0] with A[16], A[1] with A[17], and so on, similarly to the code of Figure
7=8. Third, rotate right words 4[0..8] and A4[24..31] by eight bit positions, and then swap the bits
indicated by a mask of 0xOOFFOOFF in words A[0] and A[8], A[1] and A4[9], and so on, as in the code
of Figure 7-8. After five stages of this, you don’t quite have the transpose. Finally, you have to rotate
left word A[ 1] by one bit position, A[2] by two bit positions, and so on (31 instructions). We do not
show the code, but the steps are i1llustrated below for a 4x4-bit matrix.

abcd abed abij abij aeim aeim
efgh o efgh —_— efmn ___ nefm ___ nbfj ___ bfjn
ijkl klij kled kled kocg cgko
mnop opmn opgh hopg hlpd dhlp

The bit-rearranging part of the program of Figure 7-8 requires 480 instructions (80 swaps at six
instructions each). The revised program, usingrotate instructions, requires 80 swaps at four
instructions each, plus 80 rotate instructions (16 - 5) for the first five stages, plus a final 31 rotate
instructions, for a total of 431 instructions. The prolog and epilog code would be unchanged, so using
rotate instructions in this way saves 49 instructions.

There 1s another quite different method of transposing a bit matrix: apply three shearing
transformations [GLS1]. If the matrix is n xn, the steps are (1) rotate row i to the right i bit positions,
(2) rotate column j upwards (j + 1) mod n bit positions, (3) rotate row 1 to the right (i + 1) mod » bit
positions, and (4) reflect the matrix about a horizontal axis through the midpoint. To illustrate, for a
4x4-bit matrix:

abecd abecd hlpd dhlp aeim
efgh —_ hefg _— kocg - cgko —_— bfin
1jkl klij nbfj bfjn cgko
mnop nopm aeim aeim dhlp

This method is not quite competitive with the others, because step (2) is costly. (To do it at
reasonable cost, rotate upward all columns that rotate by n/2 or more bit positions byn / 2 bit
positions [these are columns n / 2 — 1 through n—2], then rotate certain columns upward n / 4 bit
positions, and so on.) Steps 1 and 3 require onlyn — 1 instructions each, and step 4 requires no
instructions at all if the results are simply stored to the appropriate locations.



If an 8x8-bit matrix is stored in a 64-bit word in the obvious way (top row in the most significant
eight bits, and so on), then the matrix transpose operation is equivalent to three outer perfect shuffles
or unshuffles [GLS1]. This is a very good way to do it if your machine has shuffle or unshuffle as a
single instruction, but it is not a good method on a basic RISC machine.

7—4 Compress, or Generalized Extract

The APL language includes an operation called compress, written B/V, where B is a Boolean vector
and V is vector of the same length as B, with arbitrary elements. The result of the operation is a
vector consisting of the elements of V for which the corresponding bit in B is 1. The length of the
result vector 1s equal to the number of 1’s in B.

Here we consider a similar operation on the bits of a word. Given a mask m and a word x, the bits
of x for which the corresponding mask bit is 1 are selected and moved (“compressed”) to the right.
For example, if the word to be compressed is (where each letter denotes a single bit)

Click here to view code image

abcd efgh ijkl mnop grst uvwx yzAB CDEF.
and the mask 1s

Click here to view code image

0000 1111 0011 0011 1010 1010 0101 0101,
then the result 1s

Click here to view code image

0000 0000 0000 0000 efgh klop gsuw zBDEF.

This operation might also be called generalized extract, by analogy with the extract instruction found
on many computers.

We are interested in code for this operation with minimum worst-case execution time, and offer the
simple loop of Figure 7-9 as a straw man to be improved upon. This code has no branches in the
loop, and it executes in 260 instructions worst case, including the subroutine prolog and epilog.

Click here to view code image
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unsigned compress (unsigned x, unsigned m) {

unsigned r, s, b; // Result, shift, mask bit.
r = 0;
s = 0;
do {
b=m¢é&1;
r=r | ((x & b) << 8);
s = s + b;
X = x >> 1;
m=m >> 1;
} while (m != 0);

return r;



FIGURE 7-9. A simple loop for the compress operation.

It is possible to improve on this by repeatedly using the parallel suffix method (see page 97) with
the exclusive or operation [GLS1]. We will denote the parallel suffix operation by PS-XOR. The
basic idea is to first identify the bits of argument x that are to be moved right an odd number of bit
positions, and move those. (This operation is simplified if x is first anded with the mask, to clear out
irrelevant bits.) Mask bits are moved in the same way. Next, we identify the bits of x that are to be
moved an odd multiple of 2 positions (2, 6, 10, and so on), and then we move these bits of x and the
mask. Next, we identify and move the bits that are to be moved an odd multiple of 4 positions, then
those that move an odd multiple of 8, and then those that move 16 bit positions.

Because this algorithm, believed to be original with [GLS1], 1s a bit difficult to understand, and
because it is perhaps surprising that something along these lines can be done at all, we will describe
its operation in some detail. Suppose the inputs are

Click here to view code image

abcd efgh ijkl mnop grst uvwx yzAB CDEF,

m 1000 1000 1110 0000 0000 1111 0101 0101,
1 1 111
9 6 333 4444 3 2 1 0

where each letter in x represents a single bit (with value 0 or 1). The numbers below each 1-bit in the
mask » denote how far the corresponding bit of « must move to the right. This 1s the number of 0’s in n
to the right of the bit. As mentioned above, it is convenient to first clear out the irrelevant bits of «,
giving

Click here to view code image

x = a000 000 ijk0 0000 0000 uvwx 0z0B ODOF.

The plan is to first determine which bits move an odd number of positions (to the right), and move
those one bit position. Recall that the PS-XOR operation results in a 1-bit at each position where the
number of 1’s at and to the right of that position is odd. We wish to identify those bits for which the
number of 0’s strictly to the right is odd. This can be done by computing nx - -n << 1 and performing
PS-XOR on the result. This gives

Click here to view code image

mk
mp

1110 1110 0011 1111 1110 0001 0101 0100,
1010 0101 1110 1010 1010 0000 1100 1100.

Observe that ~x 1dentifies the bits of n that have a 0 immediately to the right, and ~ sums these, modulo
2, from the right. Thus, ~ identifies the bits of » that have an odd number of 0’s to the right.

The bits that will be moved one position are those that are in positions that have an odd number of
0’s strictly to the right (identified by =p) and that have a 1-bit in the original mask. This is simply v -

mp & m.

Click here to view code image

mv = 1000 0000 1110 0000 0000 0000 0100 0100.

These bits of » can be moved with the assignment



Click here to view code image

m= (m *" mv) | (mv > 1);
and the same bits of x can be moved with the two assignments

Click here to view code image

t
X

X & mv;
(x 2 t) | (> 1);

(Moving the bits of » is simpler because all the selected bits are 1°s.) Here the exclusive or is
turning off bits known to be 1 in~ and x, and the or is turning on bits known to be 0 in~ and x. The
operations could also, alternatively, both be exclusive or, or subtract and add, respectively. The
results, after moving the bits selected by nv right one position, are:

Click here to view code image

0100 1000 0111 0000 0000 1111 0OO11 0011,
0a00 €000 0ijk 0000 0000 uvwx 00zB OODF.

m
X

Now we must prepare a mask for the second iteration, in which we identify bits that are to move an
odd multiple of 2 positions to the right. Notice that the quantity nx « -mp identifies those bits that have a
0 immediately to the right in the original mask », and those bits that have an even number of 0’s to the
right in the original mask. These properties apply jointly, although not individually, to the revised
mask . (That is to say, nx identifies all the positions in the revised mask » that have a 0 to the
immediate right and an even number of 0’s to the right.) This is the quantity that, if summed from the
right with PS-XOR, identifies those bits that move to the right an odd multiple of 2 positions (2, 6, 10,
and so on). Therefore, the procedure is to assign this quantity to nx and perform a second iteration of
the above steps. The revised value of nx is

Click here to view code image

mk = 0100 1010 0001 0101 0100 0001 0001 0OOO.

A complete C function for this operation is shown in Figure 7-10. It does the job in 127 basic
RISC instructions (constant)!, including the subroutine prologand epilog. Figure 7-11 shows the
sequence of values taken on by certain variables at key points in the computation, with the same
inputs that were used in the discussion above. Observe that a by-product of the algorithm, in the last
value assigned to n, is the original » with all its 1-bits compressed to the right.

Click here to view code image
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unsigned compress (unsigned x, unsigned m) {
unsigned mk, mp, mv, t;

int 1i;
X = X & m; // Clear irrelevant bits.
mk = ~m << 1; // We will count 0's to right.

for (1 = 0; 1 < 5; i++) {
mp = mk * (mk << 1); // Parallel suffix.
mp = mp ~ (mp << 2);



(1 << 1))

mp = mp (mp << 4);
mp = mp ~ (mp << 8);
mp = mp * (mp << 16);
mv = mp & m;

m=m " mv | (mv >>
t = x & mvy

x =x "~ t | (t >

mk = mk & ~mp;

}

return x;

We calculate that the algorithm of Figure 7—10 would execute in 169 instructions on a 64-bit basic
RISC, as compared to 516 (worst case) for the algorithm of Figure 7-9.

The number of instructions required by the algorithm of Figure 710 can be reduced substantially if
the mask » is a constant. This can occur in two situations: (1) a call to “compress(x, m” occurs in a
loop, in which the value of » is not known, but it is a loop constant, and (2) the value of » is known,
and the code for compress 1s generated in advance, perhaps by a compiler.

Notice that the value assigned to x in the loop in Figure 710 is not used in the loop for anything
other than the assignment to x. And x is dependent only on itself and variable ~v. Therefore, the
subroutine can be coded with all references to » deleted, and the five values computed for ~v can be
saved in variables mvo, mv1, ..., mva. Then, in situation (1) the function without references to = can be
placed outside the loop in which “compress (x, m”” occurs, and the following statements can be placed in

the loop:

FIGURE 7-10. Parallel suffix method for the compress operation.

Click here to view code image

X = X & m;

t = x & mv0O;
t = x & mvl;
t = x & mv2;
t = x & mv3;
t = x & mv4;

This is only 21 instructions in the loop (the loading of the constants can be placed outside the loop), a
considerable improvement over the 127 required by the full subroutine of Figure 7—-10.
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i =20, mk
After PS, mp
mv

m

b4

i=1, mk
After PS, mp
mv

abcd
1000
a000

1110
1010
1000
0100
0a00

0100
1100
0100

efgh
1000
e000

1110
0101
0000
1000
e000

1010
0110
0000

ijkl
1110
i3k0

0011
1110
1110
0111
0ijk

0001
0000
0000
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mnop
0000
0000

1111
1010
0000
0000
0000

0101
1100
0000

// Bits to move.

// Compress m.

// Compress Xx.

’
.
’

.
’

) ;

grst
0000
0000

1110
1010
0000
0000
0000

0100
1100
0000

Uvwx
1111
uvwx

0001
0000
0000
1111
uvwx

0001
0000
0000

yZzAB
0101
0z0B

0101
1100
0100
0011
00zB

0001
1111
0011

CDEF
0101
0DOF

0100
1100
0100
0011
00DF

0000
0000
0000



m = 0001 1000 0111 0000 0000 1111 0000 1111
x = 000a €000 0ijk 0000 0000 uvwx 0000 zBDF

i=2, mk = 0000 1000 0001 0001 0000 0001 0000 0000
After PS, mp 0000 0111 1111 0000 1111 1111 0000 00O0O

mv 0000 0000 0111 OOOO 0OOOO 1111 0000 0000
0001 1000 0000 0111 OOOO 0000 1111 1111
x = 000a e000 0000 0Oijk 0000 0000 uvwx zBDF

3
Il

i=3 mk = 0000 1000 0000 0001 0000 0OOO 0000 0000
After PS, mp 0000 0111 1111 1111 0OOO 0000 00O0OO 0O0OO
mv 0000 0000 0000 0111 0OOO 0000 0000 00O0O

m = 0001 1000 0000 00OO 0000 0111 1111 1111

x = 000a €000 0000 0000 0000 0ijk uvwx zBDF

i=14, mk = 0000 1000 0000 0000 0000 0000 0000 00O0O
After PS, mp 1111 1000 0000 0000 0OOO 0000 0000 0000
mv 0001 1000 0000 0000 0OOO 0000 0000 0O0OO

m = 0000 0000 0000 0OCOO 0001 1111 1111 1111

x = 0000 0000 0000 0000 000a eijk uvwx zBDF

FIGURE 7-11. Operation of the parallel suffix method for the compress operation.

In situation (2), in which the value of m is known, the same sort of thing can be done, and further
optimization may be possible. It might happen that one of the five masks 1s 0, in which case one of the
five lines shown above can be omitted. For example, mask =1 is 0 if it happens that no bit moves an
odd number of positions, and s is 0 if no bit moves more than 15 positions, and so on.

As an example, for

Click here to view code image
m = 0101 0101 0101 0101 0101 0101 0101 0101,
the calculated masks are

Click here to view code image

mvO0 = 0100 0100 0100 0100 0100 0100 0100 0100

mvl = 0011 0000 0011 0000 0011 0000 0011 0000
mv2 = 0000 1111 0000 0000 0000 1111 0000 00OO
mv3 = 0000 0000 1111 1111 0000 0000 0000 00O0O

mv4d = 0000 0000 0000 0000 0000 0OOO 0000 0000

Because the last mask is 0, in the compiled code situation this compression operation is done in 17
instructions (not counting the loading of the masks). This is not quite as good as the code shown for
this operation on page 141 (13 instructions, not counting the loading of masks), which takes advantage
of the fact that alternate bits are being selected.

Using Insert and Extract

If your computer has the insert instruction, preferably with immediate values for the operands that
identify the bit field in the target register, then in the compiled situation insert can often be used to do
the compress operation with fewer instructions than the methods discussed above. Furthermore, it
doesn’t tie up registers holding the masks.

The target register is initialized to 0, and then, for each contiguous group of 1’s in the mask,
variable x is shifted right to right-justify the next field, and the insert instruction is used to insert the



bits of x in the appropriate place in the target register. This does the operation in 2 + 1 instructions,
where n is the number of fields (groups of consecutive 1’s) in the mask. The worst case is 33
instructions, because the maximum number of fields is 16 (which occurs for alternating 1’s and 0’s).

An example in which the insert method uses substantially fewer instructions is » = 0x0010084A.
Compressing with this mask requires moving bits 1, 2, 4, 8, and 16 positions. Thus, it takes the full 21
instructions for the parallel suffix method, but only 11 instructions for the insert method (there are
five fields). A more extreme case is » = 0x80000000. Here a single bit moves 31 positions, requiring
21 instructions for the parallel suffix method, but only three instructions for the insert method and
only one instruction (shift right 31) if you are not constrained to any particular scheme.

You can also use the extract instruction in various simple ways to do the compress operation with
a known mask in 3z — 2 instructions, where # is the number of fields in the mask.

Clearly, the problem of compiling optimal code for the compress operation with a known mask is a
difficult one.

Compress Left

To compress bits to the left, obviously you can reverse the argument « and the mask, compress right,
and reverse the result. Another way is to compress right and then shift left by pop(77). These might be
satisfactory if your computer has an instruction for bit reversal or population count, but if not, the
algorithm of Figure 7—10 is easily adapted: Just reverse the direction of all the shifts except the two
in the expressions 1 << i (eight to change).

The BESM-6 computer (ca. 1967) had an instruction for the compress left function (“Pack Bits in
A Masked by X”) and its inverse (“Unpack ...””), which operated on the machine’s 48-bit registers.
These instructions are not easy to implement. It is surmised by cryptography experts that their only use
was for breaking US codes [Knu8]. The BESM-6 also had the population count instruction which, as
has been noted, seems to be important to the National Security Agency.

7-5 Expand, or Generalized Insert

The inverse of the compress right function moves bits from the low-order end of a register to
positions given by a mask, while keeping the bits in order. For example, expand(0000abcd,
10011010) = a00bc0d0. Thus

compress(expand(x, m), m) = x.

This function has also been called unpack, scatter, and deposit.

It can be obtained by running the code of Figure 7—10 in reverse [Allen]. To avoid overwriting bits
in x, it is necessary to move (to the left) the bits that move a large distance first, and to move those
that move only one position last. This means that the first five “move” quantities (»v in the code) must
be computed, saved, and used in the reverse of the order in which they were computed. For many
applications this is not a problem, because these applications apply the same mask ~ to large amounts
of data, and so they would compute the move quantities in advance and reuse them anyway.

The code is shown inFigure 7-12. It executes approximately 168 basic RISC instructions
(constant), including five stores and five loads. A 64-bit version for a 64-bit machine would execute
approximately 200 instructions.

For a machine that does not have the and not instruction, the MUX operation in the second loop can



be coded in one fewer instruction with

Click here to view code image

A A

x = ((x y) & mv) X;

Click here to view code image
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unsigned expand(unsigned x, unsigned m) {
unsigned m0, mk, mp, mv, t;
unsigned arrayl[5];

int i;
m0 = m; // Save original mask.
mk = ~m << 1; // We will count 0's to right.

for (1 = 0; 1 < 5; i++) {

mp = mk * (mk << 1); // Parallel suffix.
mp = mp * (mp << 2);

mp = mp ~ (mp << 4);

mp = mp * (mp << 8);

mp = mp ~ (mp << 16);

mv = mp & m; // Bits to move.
arrayl[i] = mv;

m= (m * mv) | (mv > (1 << 1i)); // Compress m.

mk = mk & ~mp;
}

for (1 = 4; 1 >= 0; 1i--) {
mv = array[i];
t = x << (1 << 1i);
X = (x & ~mv) | (t & mv);
}
return x & m0; // Clear out extraneous bits.

FIGURE 7-12. Parallel suffix method for the expand operation.

7—6 Hardware Algorithms for Compress and Expand

This section gives hardware-oriented algorithms for the compress right function and its inverse
[Zadeck]. Like the algorithms of the preceding sections, their execution times are proportional to the
log of the computer’s word size. They are suitable for implementation in hardware, but do not yield
fast code if implemented in basic RISC instructions. We simply describe how they work without

giving C or machine code.

Compress

To illustrate the operation of the algorithm, we represent each bit of x with a letter and consider a

specific example mask m, shown below.

Click here to view code image

Input x = abcd efgh ijkl mnop grst uvwx yzAB CDEF
Mask m = 0111 1110 0110 1100 1010 1111 0011 0010



The algorithm works in log,(W) “phases,” where W is the computer’s word size in bits. Each phase

operates in parallel on “pockets” of size 2" bits, for n ranging from 1 to logy(). At the end of each
phase, each pocket of x contains the original pocket of x with the bits selected by that pocket of m
compressed to the right. Each pocket of m will contain an integer that is the number of 0-bits in that
pocket of the original m. This is equal to the number of bits of x that are not compressed to the right.
They are the known leading 0-bits in the pocket of x.

In each phase, the algorithm performs the following steps, in parallel, on each pocket of x and m,
where w 1s the pocket size in bits.

1. Set L = the left half of the pocket of x, extended with w / 2 0-bits on the right.

2. Shift L (all w bits) right by the amount given in the right half of the corresponding pocket of m,
inserting 0’s on the left. No 1’s will be shifted out on the right, because the maximum shift
amount is w / 2.

3. Set R=w/ 2 0-bits followed by the right half of the pocket of x.

4. Replace the entire w-bit pocket of x with the or of R and the shifted L.

5. Add the left and right halves of the pocket of m, and replace the entire pocket with the sum.

To apply these steps to the first phase (w = 2) would require first and’ing x with m, to clear out
irrelevant bits of x, and complementing m so that each bit of m 1s the number of 0-bits in each 1-bit
half pocket. It is simpler to make an exception of the first phase, and combine these steps with the first

compression operation by applying the logic shown in the table below to each 2-bit pocket of x and
m.

Input | Output
X m|x m

ab 00| 00 10
ab 01| 0b 01
ab 10| 0a 01
ab 11| ab 00

The third line, for example, has m = 10 (binary). This means that the left bit of x 1s selected to be part
of the result, but the right bit is not. Thus, the left bit (s) 1s compressed to the right. The other bit of x
is cleared, which ensures that in the final result, all the high-order (not selected) bits will be 0.

Applying this logic to the original x and m gives:

Click here to view code image

Bit pairs, x
m

Obcd ef0g 0j0k mnO00 0gO0s uvwx O00AB 000E
0100 0001 0101 0010 0101 0000 1000 1001

In the second phase, consider for example the second nibble above (ef0g). The quantities L = <<oo
and R = oo0og are formed. L is shifted right by one position (given by the right half of the nibble of m),
giving oero. This is or’ed with R, giving et as the new value of the nibble. The left and right halves
of m are added, giving ooo1 (no change).

Click here to view code image

Nibbles, x = 0Obcd 0efg 003k 0O0mn 00gs uvwx 00AB 000E



m = 0001 0001 0010 0010 0010 0000 0010 0011

Similarly, for the third, fourth, and fifth phases, each byte, halfword, and word o fx are
compressed, and m is updated, as follows:

Click here to view code image

Bytes, X
m

00bc defg 0000 jkmn 00gs uvwx 0000 OABE
0000 0010 0000 0100 0000 0010 0000 0101

Click here to view code image

Halfwords, x
m

0000 00bc defg jkmn 0000 000g suvw xABE
0000 0000 0000 0110 0000 0000 0000 0111

Click here to view code image

Words, X
m

0000 0000 0000 Obcd efgj kmng suvw xABE
0000 0000 0000 0000 0OOO 0000 0000 1101

Upon completion, m is an integer that gives the number of known leading 0’s in x. Subtracting this
from the word size gives the number of compressed bits in x, which equals the number of 1-bits in the
original mask m.

The reason this is not a very good algorithm for implementation with basic RISC instructions is that
it is hard to shift the half-pockets right by differing amounts. On the other hand, it might possibly be
useful on an SIMD machine that has instructions that operate on the pockets of a word in parallel and
independently.

Expand

The hardware compression algorithm can be turned into an expansion algorithm by, essentially,
running it first forward and then in reverse. As in the algorithms based on the parallel suffix method,
the five masks of the hardware compression algorithm are computed, saved, and used in the reverse
of the order in which they were computed. Actually, the last mask is not used (nor is it used in the
compression algorithm), but an additional one is required (m0) that is simply the complement of the
original mask. In the forward pass, only the steps for computing the masks need be done; those
involving the data x can be omitted.

To illustrate, suppose we have
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Input

X abcd efgh ijkl mnop grst uvwx yzAB CDEF
Mask m

0111 1110 0110 1100 1010 1111 0011 0010

Then the result of the expansion should be
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Onop grsO0 O0tu0 vwO0O x0Oy0 zABC OODE OOFO.
The masks are shown below.
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1000 0001 1001 0011 0101 0000 1100 1101
0100 0001 0101 0010 0101 0000 1000 1001

mO
ml



m2
m3
mé

0001 0001 0010 0010 0010 0000 0010 0011
0000 0010 0000 0100 0OOO 0010 0000 0101
0000 0000 0000 0110 0OOO 0000 0000 0111

The integer values of each half of m4 give the number of 0-bits in the corresponding half of the
original mask m. In particular, the right half of m has seven 0-bits. This means that the seven high-
order bits of the right half of x do not belong there—they should be in the left half of x. Thus, bits 9
through 15 of x should be shifted left just enough to put them in the left half of x, and higher-order bits
of x should be shifted left to accommodate them. This can be accomplished by shifting left the entire
32-bit word x by seven positions and replacing the left half of x with the left half of the shifted
quantity. This gives
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x = hijk lmno pgrs tuvw grst uvwx yzAB CDEF.

In general, the algorithm works with pocket sizes from 32 down to 2, in five phases, using masks
m4 down to m0. Each pocket (in parallel) is shifted left, discarding bits that are shifted out on the
left, and supplying 0’s to vacated positions on the right, so that the shifted quantity is the same length
as the pocket from which it came. Then the left half of the pocket is replaced by the left half of the
shifted quantity. This will leave “garbage” bits in both halves of the pocket. They will be zeroed-out
after the last phase by and’ing with the original mask.

Continuing, we treat m3 as two 16-bit pockets. The left pocket has the integer 4 in its right half, so
the left pocket of x is shifted left four positions (giving imno pgrs tuvw 0000), and the left half of this
replaces the left half of the left pocket inx, making the left pocket of X = 1mno pqars. Performing the
same operation on the right 16-bit pocket of x gives
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x = 1lmno pgrs pqgrs tuvw vwxy zABC yzAB CDEF.
The next phase uses m2, which consists of four 8-bit pockets. Applying it to x gives
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X = mnop pqgrs rstu tuvw vwxy zABC BCDE CDEF.
The next phase uses m 1, which consists of eight 4-bit pockets. Applying it to x gives
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X = mnop grrs sttu vwvw wxxy zABC BCDE DEEF.
The last phase uses m0, which consists of sixteen 2-bit pockets. Applying it to x gives
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X = mnop dgrss stuu vwww xxyy zABC CCDE EEFF.
The final step 1s to and this with the original mask to clear irrelevant bits. This gives
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x = Onop grs0 Otu0 vwOO0 xOy0 zABC 0O0ODE O0OFO.

The half-pockets of each computed mask contain a count of the number of O0-bits inthe



corresponding half-pocket of the original mask m. Therefore, as an alternative to computing the masks
and saving them, the machine could employ circuits for doing a population count of the 0’s in the
half-pockets “on the fly.”

7-7 General Permutations, Sheep and Goats Operation

To do general permutations of the bits in a word, or of anything else, a central problem is how to
represent the permutation. It cannot be represented very compactly. Because there are 32!
permutations of the bits in a 32-bit word, at least l'1og,(32!)1 = 118 bits, or three words plus 22 bits,
are required to designate one permutation out of the 32!.

One interesting way to represent permutations is closely related to the compression operations
discussed in Section 7—4 [GLS1]. Start with the direct method of simply listing the bit position to
which each bit moves. For example, for the permutation done by a rotate left of four bit positions, the
bit at position O (the least significant bit) moves to position 4, 1 moves to 5, ..., 31 moves to 3. This
permutation can be represented by the vector of 32 5-bit indexes:

Click here to view code image

00100
00101

11111
00000
00001

00010
00011

Treating that as a bit matrix, the representation we have in mind is its transpose, except reflected
about the off diagonal so the top row contains the least significant bits and the result uses little-endian
bit numbering. This we store as five 32-bit words in array :
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pl(0] = 1010 1010 1010 1010 1010 1010 1010 1010
pll] = 1100 1100 1100 1100 1100 1100 1100 1100
pl2] = 0000 1111 0000 1111 00OO 1111 0000 1111
pl(3] = 0000 1111 1111 OOOO 0000 1111 1111 0000
pl4] = 0000 1111 1111 1111 1111 0000 0000 0000

Each bit of p10; 1s the least significant bit of the position to which the corresponding bit of x moves,
each bit of p(1) 1s the next more significant bit, and so on. This is similar to the encoding of the masks
denoted byn~v in the previous section, except that. applies to revised masks in the compress
algorithm, not to the original mask.

The compression operation we need compresses to the left all bits marked with 1°s in the mask,

and compresses to the right all bits marked with 0’s.2 This is sometimes called the “sheep and goats”
operation (SAG), or “generalized unshuffle.” It can be calculated with
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SAG(x, m) = compress left(x, m) | compress(x, ~m).

With SAG as a fundamental operation, and a permutation » as described above, the bits of a word «
can be permuted by » in the following 15 steps:
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SAG (%, pl4]);

In these steps, SAG is used to perform a stable binary radix sort. Array » is used as 32 5-bit keys to
sort the bits of . In the first step, all bits of x for which o) = 1 are moved to the left half of the
resulting word, and all those for which 10y = 0 are moved to the right half. Other than this, the order
of the bits is not changed (that is, the sort is “stable”). Then all the keys that will be used for the next
round of sorting are similarly sorted. The sixth line 1s sorting « based on the second least significant
bit of the key, and so on.

Similar to the situation of compressing, if a certain permutation is to be used on a number of
words x, then a considerable savings results by precomputing most of the steps above. The
permutation array is revised to
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pl[l] = SAG(p[1l], p[0]);
p[2] = SAG(SAG(p [2], pl01), pll]);
p[3] = SAG(SAG(SAG(p[3], pl[0]), p[1]), pl2]);
p[4] = SAG(SAG(SAG(SAG(p[4], p[01), p[1]), p[2]), PI[3]);
and then each permutation is done with
Click here to view code image
x = SAG(x, pl[0]);
x = SAG(x, pll]);
x = SAG(x, p[z] ) ;
X = SAG(X, p[3] ) ’
x = SAG(x, pl4]);

A more direct (but perhaps less interesting) way to do general permutations of the bits in a word is
to represent a permutation as a sequence of 32 5-bit indexes. The kth index is the bit number in the
source from which the Ath bit of the result comes. (This is a “comes from” list, whereas the SAG
method uses a “goes to” list.) These could be packed six to a 32-bit word, thus requiring six words to
hold all 32 bit indexes. An instruction can be implemented in hardware such as

Click here to view code image




bitgather Rt,Rx,Ri,

where register = is a target register (and also a source), register r« contains the bits to be permuted,
and register r: contains six 5-bit indexes (and two unused bits). The operation of the instruction is
f (t<<6) | X, X, X, X, X, X, .

In words, the contents of the target register are shifted left six bit positions, and six bits are
selected from word x and placed in the vacated six positions of z. The bits selected are given by the
six 5-bit indexes in word i, taken in left-to-right order. The bit numbering in the indexes could be
either little- or big-endian, and the operation would probably be as described for either type of
machine.

To permute a word, use a sequence of six such instructions, all with the same == and r«, but
different index registers. In the first index register of the sequence, onlyindexesi, andis are

significant, as the bits selected by the other four indexes are shifted out of the left end of =:.

An implementation of this instruction would most likely allow index values to be repeated, so the
instruction can be used to do more than permute bits. It can be used to repeat any selected bit any
number of times in the target register. The SAG operation lacks this generality.

It i1s not unduly difficult to implement this as a fast (e.g., one cycle) instruction. The bit selection
circuit consists of six 32:1 MUX’s. If these are built from five stages of 2:1 MUX’s in today’s
technology (6 - 31 = 186 MUX’’s in all), the instruction would be faster than a 32-bit add instruction
[MD].

Some of the Intel machines have instructions that work much like the bit permutation operation
described, but that permute bytes, “words” (16 bits), and “doublewords” (32 bits). These are
PSHUFB, PSHUFW, and PSHUFD (Shuffle Packed Bytes/Words/Doublewords).

Permuting bits has applications in cryptography, and the closely related operation of permuting
subwords (e.g., permuting the bytes in a word) has applications in computer graphics. Both of these
applications are more likely to deal with 64-bit words, or possibly with 128, than with 32. The SAG
and bitgather methods apply with obvious changes to these larger word sizes.

To encrypt or decrypt a message with the Data Encryption Standard (DES) algorithm requires a
large number of permutation-like mappings. First, key generation is done, once per session. This
involves 17 permutation-like mappings. The first, called “permuted choice 1,” maps from a 64-bit
quantity to a 56-bit quantity (it selects the 56 non-parity bits from the key and permutes them). This is
followed by 16 permutation-like mappings from 56 bits to 48 bits, all using the same mapping, called
“permuted choice 2.”

Following key generation, each block of 64 bits in the message i1s subjected to 34 permutation-like
operations. The first and last operations are 64-bit permutations, one being the inverse of the other.
There are 16 permutations with repetitions that map 32-bit quantities to 48 bits, all using the same
mapping. Finally, there are 16 32-bit permutations, all using the same permutation. The total number
of distinct mappings is six. They are all constants and are given in [DES].

DES is obsolete, as it was proved to be insecure in 1998 by the Electronic Frontier Foundation,
using special hardware. The National Institute of Standards and Technology (NIST) has endorsed a
temporary replacement called Triple DES, which consists of DES run serially three times on each
64-bit block, each time with a different key (that is, the key length is 192 bits, including 24 parity
bits). Hence, it takes three times as many permutation operations as does DES to encrypt or decrypt.



The “permanent” replacement for DES and Triple DES, the Advanced Encryption Standard
(previously known as the Rijndael algorithm [AES]), involves no bit-level permutations. The closest
it comes to a permutation is a simple rotation of 32-bit words by a multiple of 8-bit positions. Other
encryption methods proposed or in use generally involve far fewer bit-level permutations than DES.

To compare the two permutation methods discussed here, the bitgather method has the advantages
of (1) simpler preparation of the index words from the raw data describing the permutation, (2)
simpler hardware, and (3) more general mappings. The SAG method has the advantages of (1) doing
the permutation in five rather than six instructions, (2) having only two source registers in its
instruction format (which might fit better in some RISC architectures), (3) scaling better to permute a
doubleword quantity, and (4) permuting subwords more efficiently.

Item (3) 1s discussed in [LSY]. The SAG instruction allows for doing a general permutation of a
two-word quantity with two executions of the SAG instruction, a few basic RISC instructions, and
two full permutations of single words. The bitgather instruction allows for doing it by executing
three full permutations of single words, plus a few basic RISC instructions. This does not count
preprocessing of the permutation to produce new quantities that depend only on the permutation. We
leave it to the reader to discover these methods.

Regarding item (4), to permute, for example, the four bytes of a word with bitgather requires
executing six instructions, the same as for a general bit permutation by bitgather. But with SAG it can
be done in only two instructions, rather than the five required for a general bit permutation by SAG.
The gain in efficiency applies even when the subwords are not a power of 2 in size; the number of

steps required is [logn1, where n 1s the number of subwords, not counting a possible non-
participating group of bits that stays at one end or the other.

[LSY] discusses the SAG and bitgather instructions (called “GRP” and “PPERM,,” respectively),
other possible permutation instructions based on networks, and permuting by table lookup.

There is a neat hack to add 1 to the goats—that is, to compute

SAG (SAG(x, m) + 1, m)
without using the SAG function or its inverse [Knu8]. Here we assume SAG(x, m) puts the goats on

the right, and the addition does not overflow into the “sheep” field. We leave to the reader the
pleasure of discovering this trick.

7-8 Rearrangements and Index Transformations

Many simple rearrangements of the bits in a computer word correspond to even simpler
transformations of the coordinates, or indexes, of the bits [GLS1]. These correspondences apply to
rearrangements of the elements of any one-dimensional array provided the number of array elements
is an integral power of 2. For programming purposes, they are useful primarily when the array
elements are a computer word or larger in size.

As an example, the outer perfect shuffle of the elements of an array A4 of size eight, with the result in
array B, consists of the following moves:

Ay — By; A, = B,; Ay = By; Az — Bg;

114_}31: /15_:’33; ‘46_}35; jf?—}-B?;



Each B-index is the corresponding A-index rotated left one position, using a 3-bit rotator. The outer
perfect unshuffle 1s, of course, accomplished by rotatingright each index. Some similar
correspondences are shown in Table 7—1. Here #n is the number of array elements, “Isb” means least
significant bit, and the rotations of indexes are done with a log,n-bit rotator.

TABLE 7-1. REARRANGEMENTS AND INDEX TRANSFORMATIONS

Index Transformation
Rearrangement Array Index, or Big- Little-endian Bit
endian Bit Numbering Numbering
Reversal Complement Complement
Bit flip, or generalized Exclusive or with a constant | Exclusive or with a constant
reversal (page 135)
Rotate lefi & positions Subtract £ (mod #) Add £ (mod #)
Rotate right k positions Add & (mod n) Subtract & (mod »)
Outer perfect shuffle Rotate left one position Rotate right one position
Outer perfect unshuftle Rotate right one position Rotate left one position
Inner perfect shuffle Rotate left one, then com- Complement Isb, then
plement Isb rotate right one
Inner perfect unshuffle Complement Isb, then Rotate left one, then com-
rotate right plement Isb
Transpose of an 8x8-bit Rotate (left or right) three Rotate (left or right) three
matrix held in a 64-bit positions positions
word
FFT unscramble Reverse bits Reverse bits

7-9 An LRU Algorithm

Ever wonder how your computer keeps track of which cache line is the least recently used? Here we
describe one such algorithm, known as the reference matrix method. It is primarily a hardware
algorithm, but it might have application in software.

We won’t go into a long discussion of the intriguing world of caches, but only say that we have in
mind the high-speed caches that buffer data between a computer’s main memory and the processor.
These caches may get a request for a word every computer cycle, and they should usually respond
with the data within a cycle or two, so there is not much time for a complicated algorithm.

A cache contains a copy of a subset of the data in main memory, and the problem we are
addressing is: when a cache miss occurs (that is, when a word at a certain address is requested and
the data at that address are not in the cache), how does the computer decide which block (or /ine, in
cache jargon) to replace with the requested data? Ideally, it should replace the data in the line that
will not be referenced for the longest time in the future. But we cannot know the future, so we have to
guess. The best guess over a wide variety of application programs seems to be the least recently
used (LRU) policy. This policy replaces the line that has not been referenced for the longest time.

Caches come in three varieties: direct-mapped, fully associative, and set-associative. In a direct-



mapped cache, certain bits of the address of the load or store instruction directly address a particular
cache line. When a miss occurs, there is no questionas to what line to replace—it must be the
addressed line. There is no need for an LRU or any other guessing policy.

In a fully associative cache, a block from main memory can be placed in any cache line. When a
load or store 1s executed, the address 1s looked up to see if it is in the cache. If not, it is necessary to
replace the contents of some line. The machine has complete flexibility in the choice of line to
replace. Several strategies have been used (FIFO, random, and LRU are the most common) and, as
mentioned above, LRU seems to be the one that most often results in the lowest miss rate.
Unfortunately, LRU is the most expensive to implement when there are many lines to consider for
replacement.

Often the set-associative organization is chosen. It is a compromise between direct-mapped and
fully associative. The designer decides on the degree of associativity, which is usually 2, 4, 8, or 16.
The cache 1s divided into a number of “sets,” each of which contains 2, 4, 8, or 16 lines (typically).
The set is directly addressed, using certain bits of the load or store address, but the line within the set
must be looked up. The lookup in the set is done much the same as in the case of a fully associative
cache. Now, when it is necessary to replace a line, the LRU algorithm need only determine which of
the lines within one set is the least recently used, and replace that.

With this brief background, we can describe the reference matrix method. To illustrate, assume the
cache is four-way set-associative. This means that there are four lines for which we wish to keep
track of the least recently used (referenced). The cache may be fully associative and consist of only
four lines, or it may be set-associative with four lines per set.

The reference matrix method employs a square bit matrix of dimension equal to the degree of
associativity (in principle; we will modify this statement later). Each associative set has one such
matrix. The essence of the method 1s that when line i 1s referenced, row i of the matrix is set to 1’s,
and then column i is set to 0’s. Figure 7—13 illustrates the changes in the matrix from an initial state to
its configuration after a reference to lines 3, 1, 0, 2, 0, 3, and 2, in that order.

Init 3 1 0 2 0 3 2
0123 0123 0123 0123 0123 0123 0123 0123

0111 0110 0010 0111 0101 0111 0110 0100
0011 0010 1011 0011 0001 0001 0000 0000
0001 0000 0000 0000 1101 0101 0100 1101
0000 1110 1010 0010 0000 0000 1110 1100

Line
Cid o =

FiGURE 7—13. Illustration of the reference matrix method.

Each matrix has a row containing three 1’s, two 1’s, one 1, and no 1’s. The number of the row with
no 1’s is the least recently used line. The number of the row with one 1 is the next least recently used
line, and so on. When a cache miss occurs, the machine finds the row with all 0’s and replaces the
corresponding line. It then records it as the most recently used line by setting its row to all 1’s and its
column to all 0’s.

Why does this work? Denoting the matrix by M, the reason it works is that M,; indicates whether or
not line 7 is more recently used than line j. If M; = 1, line 7 is more recently used than line j, and if M;;
= 0, line i 1s not more recently used than line ;.

Consider an arbitrary 4x4 matrix for which line 2 is referenced. Then the matrix changes as shown



in Figure 7—14. Setting row i to 1’s (except for the element on the main diagonal) is recording that
line i 1s more recently used than line j, for all j #i. Setting column i to 0’s is recording that line j is
not more recently used than line 7, for all j. Relations among cache lines other than i are not changed.
When all the lines have been referenced, all the “more recently used” relations will be established.

Thus, the reference matrix is antisymmetric and the main diagonal 1s always all 0’s. Therefore,
only part of the matrix, either the elements above the main diagonal or those below the main diagonal,
need be stored in the cache. That is what is done in practice. For an n-way associative set, n(n — 1)/2
memory bits are required. For n = 4, this is six; for n = 8§, it is 28. Twenty-eight is getting to be a bit
large, so the reference matrix method, and in fact the true LRU policy, is not often used for degrees of
associativity greater than 8. Instead, there are approximate LRU methods and methods that are not
LRU at all.

In software, the LRU policy would probably be implemented with a list of the line numbers (either
a simple vector or a linked list). When line i is referenced, the list is searched for i, and theni is
moved to the top of the list. The least recently used line number then migrates to the bottom of the list.

That method i1s relatively slow on references (because of rearranging the list), but fast in deciding
which line to replace. Another method, with the opposite speed characteristics, is to have a vector of
length equal to the degree of associativity, with position i holding both the address that line i holds
and its “age” (actually “newness”) encoded as an integer. When line i is referenced, a single variable
that holds the current “age” is incremented, and the resulting value is stored in the vector at position i.
To find the least recently used line, the vector is searched for the line with the smallest value of
“age.” This method fails if the “age” integer overflows.

Init 2
0123 0123
0| abed ab0d
2 1|efgh ef0h
= 2]ijkl 1101
3 |mnop mnOp

FIGURE 7-14. One step of the reference matrix method.

There might be one ‘“age” integer per associative set, or only one for the whole cache, or in
hardware a cycle counter could be used.

The reference matrix method might be useful in software when the degree of associativity is small.
For example, suppose an application uses eight-way set-associativity and is to run on a 64-bit
machine. Then the reference matrix can be stored in a single 64-bit register. Let the low-order eight
bits of the register hold row 0 of the matrix, the next eight bits hold row 1, and so forth. Then when
line i is referenced, byte i of the register should be set to 1’s, and bits 7, i + 8, ..., i + 56 should be
cleared. Denoting the register by m, this is accomplished as shown here.

m<«—m | (0xXFF << (8 = i))

m < m & —(0x0101010101010101 < i)

This amounts to five or six instructions, plus a few to load constants. To find the least recently used
line, search for an all-zero byte (see Section 6-1). The advantage of this method over the other
software methods briefly outlined above is that all the work is done in a register.




Exercises

1. Explain the workings of the second Mobius formula (Equation (1), page 139).
2. The perfect outer shuffle operation and its inverse employ the following masks:

m, = 0x22222222,
m; = 0x0COCOCOC,
m, = 0x00F000FO0, and

m, = 0x0000FFO00.
What is a formula for the general case, m;? A formula might be useful in situations in which an
upper bound on the length of the integers being shuffled is not known in advance, such as in
“bignum” applications.
Code a function similar to the compress function of Figure 7-9 that does the expand operation.

3

4. For an n-way set-associative cache, what is the theoretical minimum number of bits required to
implement the LRU policy? Compare that to the number of bits required for the reference matrix
method, for a few small values of 7.



Chapter 8. Multiplication

8—1 Multiword Multiplication

This can be done with, basically, the traditional grade-school method. But rather than develop an
array of partial products, it is more efficient to add each new row, as it is being computed, into a row
that will become the product.

If the multiplicand is m words, and the multiplier is n words, then the product occupies m +n
words (or fewer), whether signed or unsigned.

In applying the grade-school scheme, we would like to treat each 32-bit word as a single digit.
This works out well if an instruction that gives the 64-bit product of two 32-bit integers is available.
Unfortunately, even if the machine has such an instruction, it is not readily accessible from most high-
level languages. In fact, many modern RISC machines do not have this instruction in part because it
isn’t accessible from high-level languages and thus would not be used often. (Another reason is that
the instruction would be one of a very few that give a two-register result.)

Our procedure 1s shown in Figure 8—1. It uses halfwords as the “digits.” Parameter « gets the result,
and v and v are the multiplier and multiplicand, respectively. Each is an array of halfwords, with the
first halfword (w01, uro1, andvio1) being the least significant digit. This 1s “little-endian” order.
Parameters » and » are the number of halfwords in « and v, respectively.

The picture below may help in understanding. There is no relation between » and »; either may be
the larger.

um_lum_z "= s = owom U.l UG
= vn_l DR vl v{]

wm+n_1 wm+n—2 - o - - o - - o Wl W[}

The procedure follows Algorithm M of [Knu2, 4.3.1] but is coded in C and modified to perform
signed multiplication. Observe that the assignment to « in the upper half of Figure 8—1 cannot

overflow, because the maximum value that could be assigned to « is (216 — 1) +2(216—-1) =232 1.
Multiword multiplication is simplest for unsigned operands. In fact, the code of Figure 8-1

performs unsigned multiplication if the “correction” steps (the lines between the three-line comment
and the “return” statement) are omitted. An unsigned version can be extended to signed in three ways:

1. Take the absolute value of each input operand, perform unsigned multiplication, and then negate
the result if the input operands had different signs.

2. Perform the multiplication using unsigned elementary multiplication, except when multiplying
one of the high-order halfwords, in which case use signed x unsigned or signed x signed
multiplication.

3. Perform unsigned multiplication and then correct the result somehow.

Click here to view code image

I 4

void mulmns (unsigned short w[], unsigned short ul],
unsigned short v[], int m, int n) {
unsigned int k, t, Db;
int i, 3



for (1 = 0; 1 < m; 1i++)

w[i] = 0
for (3 = 0; 7 < n; J++) {

k = 0;

for (1 = 0; 1 < m; i++) {
t = ulil*vI[j] + w[i + J] + k;
wli + j] = t; // (I.e., t & OXFFFF).
k =t > 16;

}

wlj + m] = k;

// Now w[] has the unsigned product. Correct by
// subtracting v*2**16m if u < 0, and
// subtracting u*2**16n if v < 0.

if ((short)u[m - 1] < 0) {
b = 0; // Initialize borrow.
for (j ;] < n; jH+) |

for (1 = 0; 1 < m; 1i++) {
i+ n] - uli] - b;

return;

FIGURE 8-1. Multiword integer multiplication, signed.

The first method requires passing over as many as m + n input halfwords to compute their absolute
value. Or, if one operand is positive and one is negative, the method requires passing over as many as
max(m, n) + m + n halfwords to complement the negative input operand and the result. Perhaps more
serious, the algorithm would alter its inputs (which we assume are passed by address), which may be
unacceptable in some applications. Alternatively, it could allocate temporary space for them, or it
could alter them and later change them back. All these alternatives are unappealing.

The second method requires three kinds of elementary multiplication (unsigned X unsigned,
unsigned % signed, and signed x signed) and requires sign extension of partial products on the left,
with 0’s or 1’s, making each partial product take longer to compute and add to the running total.

We choose the third method. To see how i1t works, let # and v denote the values of the two signed
integers being multiplied, and let them be of lengths M and N bits, respectively. Then the steps in the

upper half of Figure 81 erroneously interpret u as an unsigned quantity, having value u + 2Yu,, |,
where u;, _ | 1s the sign bit of u. That is,u;, | = 1 ifu is negative, and u;, _ ; = 0 otherwise.

Similarly, the program interprets v as having value v + 2Vuy, ;.



The program computes the product of these unsigned numbers—that is, it computes
(l/l + 2MMM_ 1)(V + 2NVN_ 1) =uy+ ZMMM_ 1V + 2NVN_ U + 2M + NMM_ IVN— 1-

To get the desired result (uv), we must subtract from the unsigned product the value 2Mu,, v+ 2N,

_ ju. There is no need to subtract the term 2¥ * Ny, v\ |, because we know that the result can be

expressed in M + N bits, so there is no need to compute any product bits more significant than bit
position M + N — 1. These two subtractions are performed by the steps below the three-line comment
in Figure 8—1. They require passing over a maximum of m + »n halfwords.

It might be tempting to use the program of Figure 8—1 by passing it an array of fullword integers—
that 1s, by “lying across the interface.” Such a program will work on a little-endian machine, but not
on a big-endian one. If we had stored the arrays in the reverse order, with uio; being the most
significant halfword (and the program altered accordingly), the “lying” program would work on a
big-endian machine, but not on a little-endian one.

8-2 High-Order Half of 64-Bit Product

Here we consider the problem of computing the high-order 32 bits of the product of two 32-bit
integers. This 1s the function of our basic RISC instructions multiply high signed (wu1ns) and multiply
high unsigned (nuinu).

For unsigned multiplication, the algorithm in the upper half of Figure 81 works well. Rewrite it
for the special case m = n = 2, with loops unrolled, obvious simplifications made, and the parameters
changed to 32-bit unsigned integers.

For signed multiplication, it is not necessary to code the “correction steps” in the lower half of
Figure 8—1. These can be omitted if proper attention is paid to whether the intermediate results are
signed or unsigned (declaring them to be signed causes the right shifts to be sign-propagating shifts).
The resulting algorithm is shown in Figure 8—2. For an unsigned version, simply change all the int
declarations to unsigned.

The algorithm requires 16 basic RISC instructions in either the signed or unsigned version, four of
which are multiplications.

Click here to view code image

int mulhs (int u, int v) {
unsigned u0, v0, wO0;
int ul, vl1, wl, w2,

ot

u0 = u & OxXFFFF; ul = u >> 16;
v0 = v & OXFFFF; vl = v >> 16;
w0 = u0*v0;

t = ul*v0 + (w0 >> 106);

wl = t & OxXFFFF;

w2 =t >> 16;

wl = u0*vl + wl;

return ul*vl + w2 + (wl >> 16);

FIGURE 8-2. Multiply high signed.



8-3 High-Order Product Signed from/to Unsigned

Assume that the machine can readily compute the high-order half of the 64-bit product of two
unsigned 32-bit integers, but we wish to perform the corresponding operation on signed integers. We
could use the procedure of Figure 82, but that requires four multiplications; the procedure to be
given [BGN] 1s much more efficient than that.

The analysis is a special case of that done to convert Knuth’s Algorithm M from an unsigned to a
signed multiplication routine (Figure 8—1). Let x and y denote the two 32-bit signed integers that we
wish to multiply together. The machine will interpret x as an unsigned integer, having the value x +

232x5,, where x5, is the most significant bit of x (that is, x5, is the integer 1 ifx is negative, and 0
otherwise). Similarly, y under unsigned interpretation has the value y +232y;,.

Although the result we want is the high-order 32 bits of xy, the machine computes
(x + 2923 + 2231) = xy + 272031 y + y30) T 2%3).

To get the desired result, we must subtract from this the quantity 232(x3,y + y31x) + 2%%x3,5,. Because

we know that the result can be expressed in 64 bits, we can perform the arithmetic modulo 2%*. This
means that we can safely ignore the last term, and compute the signed high-order product as shown
below (seven basic RISC instructions).

p « mulhu(x, y) /{ multiply high unsigned instruction.

thex=3)&y I t, = xq.).
(1)
e (331)&x i ita, = ai%.

p<p-4H— 4 /I p = desired result.
Unsigned from Signed

The reverse transformation follows easily. The resulting program is the same as (1), except with the
first instruction changed to multiply high signed and the last operation changed to p <— p + ¢, + ¢,.

8—4 Multiplication by Constants

It 1s nearly a triviality that one can multiply by a constant with a sequence of shift left and add
instructions. For example, to multiply x by 13 (binary 1101), one can code

[ x<<2

,e—x<3

ret +t+x
where r gets the result.

In this section, left shifts are denoted by multiplication by a power of 2, so the above plan is
written r < 8x + 4x + x, which is intended to show four instructions on the basic RISC and most
machines.

What we want to convey here is that there is more to this subject than meets the eye. First of all,



there are other considerations besides simply the number of shift’s and add’s required to do a
multiplication by a given constant. To illustrate, below are two plans for multiplying by 45 (binary
101101).

f+ 4x t, « 4x
r<x+t t, < 8x
£« 2t {; « 32x
i ot gt § r<if+x
{4t {1, +1,
& ol i | r—rtit

The plan on the left uses a variable ¢ that holds x shifted left by a number of positions that
corresponds to a 1-bit in the multiplier. Each shifted value is obtained from the one before it. This
plan has these advantages:

» It requires only one working register other than the input x and the output r.
 Except for the first two, it uses only 2-address instructions.
* The shift amounts are relatively small.

The same properties are retained when the plan is applied to any multiplier.

The scheme on the right does all the shift’s first, with x as the operand. It has the advantage of
increased parallelism. On a machine with sufficient instruction-level parallelism, the scheme on the
right executes in three cycles, whereas the scheme on the left, running on a machine with unlimited
parallelism, requires four.

In addition to these details, it is nontrivial to find the minimum number of operations to accomplish
multiplication by a constant, where by an ‘“operation” we mean an instruction from a typical
computer’s set of add and shift instructions. In what follows, we assume this set consists of add,
subtract, shift left by any constant amount, and negate. We assume the instruction format is three-
address. However, the problem is no easier if one is restricted to only add (adding a number to itself,
and then adding the sum to itself, and so on, accomplishes a shift left of any amount), or if one
augments the set by instructions that combine a left shift and an add into one instruction (that is, such

an instruction computes z «— x + (y << n)). We also assume that only the least-significant 32 bits of
the product are wanted.

The first improvement to the basic binary decomposition scheme suggested above isto use
subtract to shorten the sequence when the multiplier contains a group of three or more consecutive 1-
bits. For example, to multiply by 28 (binary 11100), we can compute 32x — 4x (three instructions)
rather than 16x + 8x + 4x (five instructions). On two’s-complement machines, the result is correct

(modulo 232) even if the intermediate result of 32x overflows.

To multiply by a constant m with the basic binary decomposition scheme (using only sAift’s and
add’s) requires

2pop(m) —1 -9

instructions, where & = 1 if m ends in a 1-bit (is odd), and 6 = 0 otherwise. If subtract s also used, it



requires
4g(m) +2s(m)—1-29

instructions, where g(m) is the number of groups of two or more consecutive 1-bits in m, s(m) is the
number of “singleton” 1-bits in m, and & has the same meaning as before.

For a group of size 2, it makes no difference which method is used.

The second improvement is to treat specially groups that are separated by a single 0-bit. For
example, consider m = 55 (binary 110111). The group method calculates this as (64x — 16x) + (8x —
x), which requires six instructions. Calculating it as 64x — 8x —x, however, requires only four.
Similarly, we can multiply by binary 110111011 as illustrated by the formula 512x — 64x — 4x —x
(six instructions).

The formulas above give an upper bound on the number of operations required to multiply a
variable x by any given number m. Another bound can be obtained based on the size of m in bits—that

is,onn=|logym |+ 1.

THEOREM. Multiplication of a variable x by an n-bit constant m, m > 1, can be accomplished
with at most n instructions of the type add, subtract, and shift left by any given amount.

Proof. (Induction on n.) Multiplication by 1 can be done in 0 instructions, so the theorem holds for
n=1.For n> 1, if m ends in a 0-bit, then multiplication by m can be accomplished by multiplying by
the number consisting of the left n — 1 bits of m (that is, by m / 2), inn — 1 instructions, followed by a
shift left of the result by one position. This uses # instructions altogether.

If m ends in binary 01, then mx can be calculated by multiplying x by the number consisting of the
left n — 2 bits of m, inn — 2 instructions, followed by a left shift of the result by 2, and an add of x.
This requires 7 instructions altogether.

If m ends in binary 11, then consider the cases in which it ends in 0011, 0111, 1011, and 1111. Let
t be the result of multiplying x by the left n — 4 bits of m. If m ends in 0011, then mx = 16¢ + 2x + x,
which requires (n — 4) + 4 = n instructions. If m ends in 0111, then mx = 16¢ + 8 — x, which requires
n instructions. If m ends in 1111, then mx = 16¢ + 16x —x, which requires n instructions. The
remaining case is that m ends in 1011.

It 1s easy to show that mx can be calculated in#n instructions if m ends in 001011, 011011, or
111011. The remaining case is 101011.

This reasoning can be continued, with the “remaining case” always being of the form
101010...10101011. Eventually, the size of m will be reached, and the only remaining case is the
number 101010...10101011. This n-bit number contains n / 2 + 1 1-bits. By a previous observation, it
can multiply x with 2(n / 2 + 1) — 2 = n instructions.

Thus, in particular, multiplication by any 32-bit constant can be done in at most 32 instructions, by
the method described above. By inspection, it is easily seen that for n even, the n-bit number
101010...101011 requires n instructions, and for » odd, the n-bit number 1010101...010110 also

requires # instructions, so the bound is tight.

The methodology described so far is not difficult to work out by hand or to incorporate into an
algorithm such as might be used in a compiler; but such an algorithm would not always produce the
best code, because further improvement is sometimes possible. This can result from factoring the
multiplier m or some intermediate quantity along the way of computing mx. For example, consider



again m = 45 (binary 101101). The methods described above require six instructions. Factoring 45 as
5 - 9, however, gives a four-instruction solution:

f—4x+x

r< 8¢+t

Factoring can be combined with the binary decomposition methods. For example, multiplication by
106 (binary 1101010) requires seven instructions by binary decomposition, but writing itas 7 - 15 +
1 leads to a five-instruction solution. For large constants, the smallest number of instructions that
accomplish the multiplication may be substantially fewer than the number obtained by the simple
binary decomposition methods described. For example, m = 0OXAAAAAAAB requires 32 instructions
by binary decomposition, but writing this valueas 2 - 5 - 17 - 257 - 65537 + 1 gives a ten-instruction
solution. (Ten instructions is probably not typical of large numbers. The factorization reflects the
simple bit pattern of alternate 1°s and 0’s.)

There does not seem to be a simple formula or procedure that determines the smallest number of
shift and add instructions that accomplishes multiplication by a given constant m. A practical search
procedure is given in [Bern], but it does not always find the minimum. Exhaustive search methods to
find the minimum can be devised, but they are quite expensive in either space or time. (See, for
example, the tree structure of Figure 15 in [Knu2, 4.6.3].)

This should give an idea of the combinatorics involved in this seemingly simple problem. Knuth
[Knu2, 4.6.3] discusses the closely related problem of computing @” using a minimum number of

multiplications. This is analogous to the problem of multiplying by m using only addition instructions.
Exercises

1. Show that for a 32x32 = 64 bit multiplication, the low-order 32 bits of the product are the
same whether the operands are interpreted as signed or unsigned integers.

2. Show how to modify the nuins function (Figure 8-2) so that it calculates the low-order half of the
64-bit product, as well as the high-order half. (Just show the calculation, not the parameter

passing.)
3. Multiplication of complex numbers is defined by

(a + bi)(c +di)=ac— bd + (ad + bc)i.

This can be done with only three multiplications.! Let

g = bd, and

r = (a+b)(c+d).
Then the product is given by

pP=q+(r—p-q,
which the reader can easily verify.

Code a similar method to obtain the 64-bit product of two 32-bit unsigned integers using only
three multiplication instructions. Assume the machine’s multiply instruction produces the 32
low-order bits of the product of two 32-bit integers (which are the same for signed and unsigned



multiplication).



Chapter 9. Integer Division

9—1 Preliminaries

This chapter and the following one give a number of tricks and algorithms involving “computer
division” of integers. In mathematical formulas we use the expression x / y to denote ordinary rational
division, x +y to denote signed computer division of integers (truncating toward 0), and x £y to
denote unsigned computer division of integers. Within C code, /v, of course, denotes computer
division, unsigned if either operand is unsigned, and signed if both operands are signed.

Division is a complex process, and the algorithms involving it are often not very elegant. It is even
a matter of judgment as to just how signed integer division should be defined. Most high-level
languages and most computer instruction sets define the result to be the rational result truncated
toward 0. This and two other possibilities are illustrated below.

Click here to view code image

truncating modulus floor
7+3 = 2 rem 1 2 rem 1 2 rem 1
(=7)=+3 = -2 rem -1 -3 rem 2 -3 rem 2
T+=(=3) = -2 rem 1 -2 rem 1 -3 rem -2
(=7)+= (=3) = 2 rem -1 3 rem 2 2 rem -1

The relation dividend = quotient * divisor + remainder holds for all three possibilities. We define

“modulus” division by requiring that the remainder be nonnegative.l We define “floor” division by
requiring that the quotient be the floor of the rational result. For positive divisors, modulus and floor
division are equivalent. A fourth possibility, seldom used, rounds the quotient to the nearest integer.

One advantage of modulus and floor division is that most of the tricks simplify. For example,
division by 2" can be replaced by a shift right signed of n positions, and the remainder of dividing x
by 2" is given by the logical and of x and 2" — 1. I suspect that modulus and floor division more often
give the result you want. For example, suppose you are writing a program to graph an integer-valued
function, and the values range from imin to imax. You want to set up the extremes of the ordinate to be
the smallest multiples of 10 that include imin and imax. Then the extreme values are simply (imin +
10) * 10 and ((imax + 9) = 10) * 10 if modulus or floor division is used. If conventional division is
used, you must evaluate something like:

Click here to view code image

if (imin >= 0) gmin = (imin/10)*10;
else gmin = ((imin - 9)/10)*10;
if (imax >= 0) gmax = ((imax + 9)/10)*10;
else gmax = (imax/10)*10;

Besides the quotient being more useful with modulus or floor division than with truncating
division, we speculate that the nonnegative remainder is probably wanted more oftenthan a
remainder that can be negative.

It is hard to choose between modulus and floor division, because they differ only when the divisor
is negative, which is unusual. Appealing to existing high-level languages does not help, because they
almost universally use truncating division for =,y when the operands are signed integers. A few give



floating-point numbers, or rational numbers, for the result. Looking at remainders, there is confusion.
In Fortran 90, the voo function gives the remainder of truncating division and wvoouro gives the remainder
of floor division (which can be negative). Similarly, in Common Lisp and ADA, REM is the
remainder of truncating division, and MOD is the remainder of floor division. In PL/I, voo 1s always
nonnegative (it is the remainder of modulus division). In Pascal, 2 moa = 1s defined only for s > 0, and
then it is the nonnegative value (the remainder of either modulus or floor division).

Anyway, we cannot change the world even if we knew how we wanted to change it,2 so in what
follows we will use the usual definition (truncating) for x + y.
A nice property of truncating division is that it satisfies

(-n) +d=n+ (-d) = —(n + d), for d £0.

Care must be exercised when applying this to transform programs, because if n or d is the maximum

negative number, —n or —d cannot be represented in 32 bits. The operation (-23!) = (-1) is an
overflow (the result cannot be expressed as a signed quantity in two’s-complement notation), and on
most machines the result is undefined or the operation is suppressed.

Signed integer (truncating) division is related to ordinary rational division by

s s {l_m’dj, if d#0,nd>0, o

i Tn/d], if d=0,nd<0.

Unsigned integer division—that is, division in which both n and d are interpreted as unsigned integers
—satisfies the upper portion of (1).

In the discussion that follows, we make use of the following elementary properties of arithmetic,
which we don’t prove here. See [Knul] and [ GKP] for interesting discussions of the floor and ceiling
functions.

THEOREM D1. For x real, k an integer,
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THEOREM D3. For x real, d an integer > 0:

LLx]/d]=|x/d] and [[x]/d]=[x/d].
COROLLARY. For a, b real, b # 0, d an integer > 0,

51| =[3a) = [[5h]"T3al

THEOREM DA4. For n, d integers, d # 0, and x real,

LgﬂcJ 7 EJ if 0<x< H and [5+x-‘ = [5-‘ Qf—‘}il{xiﬂ'

In the theorems below, rem(n, d) denotes the remainder of n divided by d. For negative d, it is
defined by rem(n, —d) = rem(n, d), as in truncating and modulus division. We do not use rem(n, d)
with n < 0. Thus, for our use, the remainder is always nonnegative.

THEOREM D5. For n >0, d #0,

2rem(n, d)+1 or
2rem(n, d) - |d| + 1

2rem(n, d) or

2rem(n, d)—|d|,

(whichever value is greater than or equal to 0 and less than |d)|).
THEOREM D6. For n>0,d # 0,

rem(2n, d) = { and rem(Zn+1,d) = {

rem(2n, 2d) = 2rem(n, d).

Theorems D5 and D6 are easily proved from the basic definition of remainder—that 1is, that for
some integer ¢ it satisfies

n =qd +rem(n, d) with 0 <rem(n, d) <|d|,

providedn > 0 andd # 0 (n and d can be non-integers, but we will use these theorems only for
integers).

92 Multiword Division

As in the case of multiword multiplication, multiword division can be done by the traditional grade-
school method. The details, however, are surprisingly complicated. Figure 9—1 1s Knuth’s Algorithm
D [Knu2, 4.3.1], coded in C. The underlying form of division it uses is 32 ¥ 16 = 32.. (Actually, the
quotient of these underlying division operations is at most 17 bits long.)

Click here to view code image

¥ T

int divmnu (unsigned short g[], unsigned short r[],
const unsigned short ul[], const unsigned short v|[],
int m, int n) {

const unsigned b = 65536; // Number base (16 bits).
unsigned short *un, *vn; // Normalized form of u, v.
unsigned ghat; // Estimated quotient digit.
unsigned rhat; // A remainder.

unsigned p; // Product of two digits.

int s, i, j, t, k;



if mMm<n || n<=20 || v[n-1] == 0)

return 1; // Return if invalid param.
if (n == 1) { // Take care of
k = 0; // the case of a
for (3 =m - 1; j >= 0; j--) { // single-digit
aljl = (k*b + uljl)/v[0]; // divisor here.
k = (k*b + ulj]) - glj]l*v[0];
}
if (r != NULL) r[0] = k;
return O;

}

// Normalize by shifting v left just enough so that
// its high-order bit is on, and shift u left the

// same amount. We may have to append a high-order

// digit on the dividend; we do that unconditionally.

s = nlz(v[n-1]) - 16; // 0 <= s <= 16.
vn = (unsigned short *)alloca(2*n);
for (i = n - 1; 1 > 0; i--)
vnl[i] = (v[i] << s) | (v[i-1] >> 16-s);
vn[0] = v[0] << s;
un = (unsigned short *)alloca(2*(m + 1))
un[m] = u[m-1] >> 16-s;
for (i = m-1; i > 0; i--)
un[i] = (uli] << s) | (ufl[i-11 >> 1l6-8);
un[0] = u[0] << s;
for (3 =m - n; J >= 0; j--) { // Main loop.
// Compute estimate ghat of g[j].
ghat = (un[j+nl*b + un[j+n-1])/vn[n-1];
rhat = (un[j+n]*b + un[j+n-1]) - ghat*vn[n-1];
again:
if (ghat >= b || ghat*vn[n-2] > b*rhat + un[j+n-2])

{ ghat = ghat - 1;

rhat = rhat + vn[n-1];

if (rhat < b) goto again;
}

// Multiply and subtract.
k = 0;
for (i = 0; 1 < n; i++) {

p = ghat*vn[i];
t = un[i+]j] - k - (p & OXFFFF);
unl[i+j] = t;
k = (p > 16) - (t >> 16);
}
t = un[j+n] - k;
un[j+n] = t;
gljl = ghat; // Store quotient digit.
if (£ < 0) { // If we subtracted too
gljl = gqlj] - 1; // much, add back.
k = 0;
for (i = 0; 1 < n; i++) {
t = un[i+j] + vn[i] + k;
unf[i+j] = t;
k =t > 16;



}
un[j+n] = un[j+n] + k;
1
} // End jJ.
// If the caller wants the remainder, unnormalize
// it and pass it back.

if (r != NULL) {
for (1 = 0; i < n; 1i++)
r[ii] = (un[i] >> s) | (un[i + 1] << 16-s8);
}
return O;

FIGURE 9-1. Multiword integer division, unsigned.

The algorithm processes its inputs and outputs a halfword at a time. Of course, we would prefer to
process a fullword at a time, but it seems that such an algorithm would require an instruction that does
64 ¥ 32 = 32 division. We assume here that either the machine does not have that instruction or it is
hard to access from our high-level language. Although we generally assume the machine has
32 ¥ 32 = 32 division, for this problem 32 ¥ 16 = 16 suffices.

Thus, for this implementation of Knuth’s algorithm, the base » is 65536. See [Knu2] for most of the
explanation of this algorithm.

The dividend v and the divisor v are in “little-endian” order—that is, uro1 and vro; are the least
significant digits. (The code works correctly on both big- and little-endian machines.) Parameters =
and » are the number of halfwords inu. and v, respectively (Knuth defines » to be the length of the
quotient). The caller supplies space for the quotient o and, optionally, for the remainder . The space
for the quotient must be at leastn - » + 1 halfwords, and for the remainder, » halfwords. Alternatively,
a value ofwurr can be given for the address of the remainder to signify that the remainder is not
wanted.

The algorithm requires that the most significant digit of the divisor, vin - 17, be nonzero. This
simplifies the normalization steps and helps to ensure that the caller has allocated sufficient space for
the quotient. The code checks that vi» - 1) 1s nonzero, and also the requirements that» > 1 and n > n. If
any of these conditions are violated, it returns with an error code (return value 1).

After these checks, the code performs the division for the simple case in which the divisor is of
length 1. This case is not singled out for speed; the rest of the algorithm requires that the divisor be of
length 2 or more.

If the divisor is of length 2 or more, the algorithm normalizes the divisor by shifting it left just
enough so that its high-order bit is 1. The dividend is shifted left the same amount, so the quotient is
not changed by these shifts. As explained by Knuth, these steps are necessary to make it easy to guess
each quotient digit with good accuracy. The number of leading zeros function, nlz(x), is used to
determine the shift amount.

In the normalization steps, new space is allocated for the normalized dividend and divisor. This is
done because it is generally undesirable, from the caller’s pointof view, to alter these input
arguments, and because it may be impossible to alter them—they may be constants in read-only
memory. Furthermore, the dividend may need an additional high-order digit. C’s “alloca” function is
ideal for allocating this space. It is usually implemented very efficiently, requiring only two or three
in-line instructions to allocate the space and no instructions at all to free it. The space is allocated on



the program’s stack, in such a way that it is freed automatically upon subroutine return.

In the main loop, the quotient digits are cranked out one per loop iteration, and the dividend is
reduced until it becomes the remainder. The estimate qnat of each quotient digit, after being refined by
the steps in the loop labeled again, is always either exact or too high by 1.

The next steps multiply qnat by the divisor and subtract the product from the current remainder, as
in the grade-school method. If the remainder is negative, it is necessary to decrease the quotient digit
by 1 and either re-multiply and subtract or, more simply, adjust the remainder by adding the divisor to
it. This need be done at most once, because the quotient digit was either exact or 1 too high.

Lastly, the remainder is given back to the caller if the address of where to put it is non-null. The
remainder must be shifted right by the normalization shift amount s.

The “add back” steps are executed only rarely. To see this, observe that the first calculation of
each estimated quotient digit qnac is done by dividing the most significant two digits of the current
remainder by the most significant digit of the divisor. The steps in the “again” loop amount to refining
anat t0 be the result of dividing the most significant three digits of the current remainder by the most
significant two digits of the divisor (proof omitted; convince yourself of this by trying some examples
using » = 10). Note that the divisor is greater than or equal to »/2 (because of normalization), and the
dividend is less than or equal to » times the divisor (because each remainder is less than the divisor).

How accurate is the quotient estimated by using only three dividend digits and two divisor digits?
Because normalization was done, it can be shown to be quite accurate. To see this somewhat
intuitively (not a formal proof), consider estimating # / v in this way for base ten arithmetic. It can be
shown that the estimate is always high (or exact). Thus, the worst case occurs if truncation of the
divisor to two digits decreases the divisor by as much as possible in the sense of relative error, and
truncation of the dividend to three digits decreases it by as little as possible (which 1s 0), and if the
dividend is as large as possible. This occurs for the case 49900...0/5099...9, which we estimate by
499/50 = 9.98. The true result is approximately 499/51 = 9.7843. The difference of 0.1957 reveals
that the estimated quotient digitand the true quotient digit, which are the floor functions of these
ratios, will differ by at most 1, and this will occur about 20% of the time (assuming the quotient digits
are uniformly distributed). This, in turn, means that the “add back” steps will be executed about 20%
of the time.

Carrying out this (non-rigorous) analysis for a general base b yields the result that the estimated
and true quotients differ by at most 2 / b. For b = 65536, we again obtain the result that the difference
between the estimated and true quotient digits is at most 1, and this occurs with probability 2/65536 =
0.00003. Thus, the “add back” steps are executed for only about 0.003% of the quotient digits.

An example that requires the add back step 1s, in decimal, 4500/501. A similar example for base
65536 is 0x7FFF8000 00000000/0x8000 00000001.

We will not attempt to estimate the running time of this entire program, but simply note that for
large m and n, the execution time is dominated by the multiply/subtract loop. On a good compiler this
will compile into about 16 basic RISC instructions, one of which is multiply. The “sor 3 loop is
executed m —n + 1 times, and the multiply/subtract loop » times, giving an execution time for this part
of the program of (15 +mul)n(m —n + 1) cycles, where mul is the time to multiply two 16-bit
variables. The program also executes m — n + 1 divide instructions and one number of leading zeros
instruction.

Signed Multiword Division



We do not give an algorithm specifically for signed multiword division, but merely point out that the
unsigned algorithm can be adapted for this purpose as follows:

1. Negate the dividend if it is negative, and similarly for the divisor.

2. Convert the dividend and divisor to unsigned representation.

3. Use the unsigned multiword division algorithm.

4. Convert the quotient and remainder to signed representation.

5. Negate the quotient if the dividend and divisor had opposite signs.

6. Negate the remainder if the dividend was negative.
These steps sometimes require adding or deleting a most significant digit. For example, assume for
simplicity that the numbers are represented in base 256 (one byte per digit), and that in the signed
representation, the high-order bit of the sequence of digits is the sign bit. This 1s much like ordinary
two’s-complement representation. Then, a divisor of 255, which has signed representation O0xO0FF,

must be shortened in step 2 to OxFF. Similarly, if the quotient from step 3 begins with a 1-bit, it must
be provided with a leading 0-byte for correct representation as a signed quantity.

9-3 Unsigned Short Division from Signed Division

By “short division” we mean the division of one single word by another (e.g., 32+32 = 32). It is the
form of division provided by the “/” operator, when the operands are integers, in C and many other
high-level languages. C has both signed and unsigned short division, but some computers provide
only signed division in their instruction repertoire. How can you implement unsigned division on such
a machine? There does not seem to be any really slick way to do it, but we offer some possibilities
here.

Using Signed Long Division

Even if the machine has signed long division (64+32 = 32), unsigned short division is not as simple
as you might think. In the XLC compiler for the IBM RS/6000, it is implemented as illustrated below
for g « (n Xd)..

if 2 dthen g < 0
elseifd = 1thengq<«n
elseifd <1 then g « 1

else g« (0| n)+d
The third line is really testing to see if = 231.. If d is algebraically less than or equal to 1 at this
point, then because it is not equal to 1 (from the second line), it must be algebraically less than or
equal to 0. We don’t care about the case d = 0, so for the cases of interest, if the test on the third line
evaluates to true, the sign bit of d is on, that is, d > 231.. Because from the first line it is known that

n ¥ d, and because n cannot exceed 232 — 1, n ¥ d = 1.

The notation on the fourth line means to form the double-length integer consisting of 32 0-bits
followed by the 32-bit quantity n, and divide it by d. The test for d =1 (second line) is necessary to

ensure that this division does not overflow (it would overflow if 7 = 2% and then the quotient would

be undefined).



By commoning the comparisons on the second and third lines,? the above can be implemented in 11
instructions, three of which are branches. If it is necessary that the divide be executed whend = 0, to
get the overflow interrupt, then the third line can be changed to “else ifd <0 theng «— 1,” giving a
12-instruction solution on the RS/6000.

It is a simple matter to alter the above code so that the probable usual cases (2 < d ¥ 23!) do not go
through so many tests (begin withifd <1 ...), but the code volume increases slightly.

Using Signed Short Division

This section is written for a 32-bit machine, but it applies to a 64-bit machine (thatis, getting
unsigned 6464 = 64 division from the same form of signed division) by changing all occurrences of
31 to 63. It can be used to get unsigned division in Java, which lacks unsigned integers.

If signed long division is not available, but signed short division is, then n X d can be implemented
by somehow reducing the problem to the case 7, d < 23! and using the machine’s divide instruction. If
d 223 thenn *d can only be 0 or 1, so this case is easily dispensed with. Then, we can reduce the
dividend by using the fact that the expression ((r £2) + d) x 2 approximates n ¥ d with an error of
only 0 or 1. This leads to the following method:

1. ifd<0thenifn < dthen g« 0
else g « 1

2
3. elsedo

4, g ((ni2)y+d)x2
5 r<—n—qd

6 if r¥dthen g« ¢q+1

7. end
The testd <0 on line 1 is really testing to determine ifd 2 231, Ifd 3 23!, then the largest the

quotient could be is (232 — 1) + 231 = 1, so the first two lines compute the correct quotient.

Line 4 represents the code shift right unsigned 1, divide, shift left 1. Clearly, p £2 * 231, and at
this point d = 23" as well, so these quantities can be used in the computer’s signed division instruction.
(Ifd =0, overflow will be signaled here.)

The estimate computed at line 4 is

g =Ln2)/d] 2 = |n/Qdy]-2 = ”“‘ETZ(”’ 2d)

where we have used the corollary of Theorem D3. Line 5 computes the remainder corresponding to
the estimated quotient. It is

r o= n_n—rcn;[n, 2d)d = rem(n, 2d).

Thus, 0 <r <2d. If r <d, then g is the correct quotient. If » > d, then adding 1 to g gives the correct
quotient (the program must use an unsigned comparison here, because of the possibility that 7 > 231).

By moving the load immediate of 0 into g ahead of the comparisonn *d, and coding the



assignment ¢ <— 1 in line 2 as a branch to the assignment ¢ «— ¢ + 1 1n line 6, this can be coded in 14
instructions on most machines, four of which are branches. It is straightforward to augment the code to
produce the remainder as well: to line 1 append r < n, to line 2 append r «<— n — d, and to the “then”
clause in line 6 append r <— r — d. (Or, at the cost of a multiply, simply append r < n — gd to the end
of the whole sequence.)

An alternative for lines 1 and 2 is

if m 2 dthen g« 0
elseif d <0 then g < 1.

which can be coded a little more compactly, for a total of 13 instructions, three of which are
branches. But it executes more instructions in what is probably the usual case (small numbers with n

> d).

Using predicate expressions, the program can be written

I. ifd<0theng <« (n=d)
2. elsedo
3. g ((ni2)y+d)yx2
4 r«n-qd
5 ge—g+(rid

6. end
which saves two branches if there is a way to evaluate the predicates without branching. On the basic
RISC they can be evaluated in one instruction (cvecev); on MIPS they take two (siru, xorr). On most
computers, they can be evaluated in four instructions each (three if equipped with a full set of logic
instructions), by using the expression for x <y given in “Comparison Predicates” on page 23, and
simplifying because on line 1 of the program above it i1s known that d5; = 1, and on line 5 it is known

that d5; = 0. The expression simplifies to

nid=(n&—~(n-d))=31 onlinel, and

rid=(r| =(r—d)»H =31 onlineS5.

We can get branch-free code by forcing the dividend to be 0 when d 3 23!, Then, the divisor can be
used in the machine’s signed divide instruction, because when it is misinterpreted as a negative
number, the result is set to 0, which is within 1 of being correct. We’ll still handle the case of a large
dividend by shifting it one position to the right before the division, and then shifting the quotient one
position to the left after the division. This gives the following program (ten basic RISC instructions):

. teds 31

2. nené&—t

3. g« ((n"L2)+d)x?2
4, r<n-qd

5

qe—q+(rzd)



9—4 Unsigned Long Division

By “long division” we mean the division of a doubleword by a single word. For a 32-bit machine,
this 1s 64 ¥ 32 = 32 division, with the result unspecified in the overflow cases, including division by
0.

Some 32-bit machines provide an instruction for unsigned long division. Its full capability,
however, gets little use, because only 32 ¥ 32 = 32 division is accessible with most high-level
languages. Therefore, a computer designer might elect to provide only 32 ¥ 32 division and would
probably want an estimate of the execution time of a subroutine that implements the missing function.
Here we give two algorithms for providing this missing function.

Hardware Shift-and-Subtract Algorithms

As a first attempt at doing long division, we consider doing what the hardware does. There are two
algorithms commonly used, called restoring and nonrestoring division [H&P, sec. A-2; EL]. They
are both basically “shift-and-subtract” algorithms. In the restoring version, shown below, the
restoring step consists of adding back the divisor when the subtraction gives a negative result. Here x,
y, and z are held in 32-bit registers. Initially, the double-length dividend 1s x || y, and the divisor is z.
We need a single-bit register ¢ to hold the overflow from the subtraction.

doi«1to32

cllx|y<2(x|y) // Shift left one.
cllx<(c|x)—(0b0] z) /! Subtract (33 bits).
Yyt // Set one bit of quotient.
ifcthen c||x <« (c|/x)+(0b0|z) //Restore.

end

Upon completion, the quotient 1s in register y and the remainder is in register x.

The algorithm does not give a useful result in the overflow cases. For division of the doubleword
quantity x || y by 0, the quotient obtained is the one’s-complement of x, and the remainder obtained is
y. In particular, 0 ¥ 0 = 232 | rem 0. The other overflow cases are difficult to characterize.

It might be useful if, for nonzero divisors, the algorithm would give the correct quotient modulo
232, and the correct remainder. The only way to do this seems to be to make the register represented
byc | x ||y above 97 bits long, and do the loop 64 times. This is doing a4 ¥32 = 64 division. The
subtractions would still be 33-bit operations, but the additional hardware and execution time make
this refinement probably not worthwhile.

This algorithm is difficult to implement exactly in software, because most machines do not have the
33-bit register that we have represented by ¢ || x. Figure 9-2, however, illustrates a shift-and-subtract
algorithm that reflects the hardware algorithm to some extent.

The variable -« is used for a device to make the comparison come out right. We want to do a 33-bit
comparison after shiftingx || y. If the first bit of x is 1 (before the shift), then certainly the 33-bit
quantity is greater than the divisor (32 bits). In this case, = | « is all 1’s, so the comparison gives the
correct result (true). On the other hand, if the first bit of « 1s 0, then a 32-bit comparison is sufficient.

The code of the algorithm in Figure 9-2 executes in 321 to 385 basic RISC instructions, depending



upon how often the comparison is true. If the machine has shift left double, the shifting operation can
be done in one instruction, rather than the four used above. This would reduce the execution time to
about 225 to 289 instructions (we are allowing two instructions per iteration for loop control).

The algorithm in Figure 9—2 can be used to do 32 ¥ 32 = 32 division by supplying =« = 0. The only
simplification that results is that the variable « can be omitted, as its value would always be 0.

Click here to view code image

T 1

unsigned divlu(unsigned x, unsigned y, unsigned z) {
// Divides (x || y) by z.
int i;
unsigned t;

for (i = 1; 1 <= 32; 1i++) {
t = (int)x >> 31; // All 1's if x(31) = 1.
x = (x << 1) | (y > 31); // sShift x || y left
y =y << 1; // one bit.
if ((x | £) >= z) {
X = X - Zy
y =y + 1;
}
}
return y; // Remainder is x.

FIGURE 9-2. Divide long unsigned, shift-and-subtract algorithm.

On the next page 1s the nonrestoring hardware division algorithm (unsigned). The basic idea is that,
after subtracting the divisor z from the 33-bit quantity that we denote by ¢ || x, there is no need to add
back z if the result was negative. Instead, it suffices to add on the next iteration rather than subtract.
This is because adding z (to correct the error of having subtracted z on the previous iteration), shifting
left, and subtracting z is equivalent to adding z(2(u +z) —z = 2 u +z). The advantage to hardware is
that there 1s only one add or subtract operation on each loop iteration, and the adder is likely to be the
slowest circuit in the loop.? An adjustment to the remainder is needed at the end if it is negative. (No
corresponding adjustment of the quotient is required.)

The input dividend 1s the doubleword quantity x |y, and the divisor is z. Upon completion, the
quotient is in register y and the remainder is in register x.



c =10
doi<e«1to32

if ¢ = 0 then do
cllx|y<2(x|y) // Shift left one.
cllx <« (c||x)—(0b0| z) // Subtract divisor.
end
else do
cllx||ye2(x|y) // Shift left one.
cl|x e« (c||x)+(0b0| z) // Adddivisor.
end
Py & —c /I Set one bit of quotient.
end
ifec =1thenx«x+z // Adjust remainder if negative.

This does not seem to adapt very well to a 32-bit algorithm.

The 801 minicomputer (an early experimental RISC machine built by IBM) had a divide step
instruction that essentially performed the steps in the body of the loop above. It used the machine’s
carry status bit to hold ¢ and the MQ (a 32-bit register) to hold y. A 33-bit adder/subtracter is needed
for its implementation. The 801°s divide step instruction was a little more complicated than the loop
above, because it performed signed division and it had an overflow check. Using it, a division
subroutine can be written that consists essentially of 32 consecutive divide step instructions followed
by some adjustments to the quotient and remainder to make the remainder have the desired sign.

Using Short Division

An algorithm for 64 ¥ 32 = 32 division can be obtained from the multiword division algorithm of
Figure 9—1 on page 185, by specializing it to the case m = 4, n = 2. Several other changes are
necessary. The parameters should be fullwords passed by value, rather than arrays of halfwords. The
overflow condition is different; it occurs if the quotient cannot be contained in a single fullword. It
turns out that many simplifications to the routine are possible. It can be shown that the guess gnat 1s
always exact; it is exact if the divisor consists of only two halfword digits. This means that the “add
back’™ steps can be omitted. If the “main loop” of Figure 9—1 and the loop within it are unrolled, some
minor simplifications become possible.

The result of these transformations is shown in Figure 9-3. The dividend is inuwi and wo, with u1
containing the most significant word. The divisor is parameter v. The quotient is the returned value of
the function. If the caller provides a non-null pointer in parameter -, the function will return the
remainder in the word to which r points.

For an overflow indication, the program returns a remainder equal to the maximum unsigned
integer. This 1s an impossible remainder for a valid division operation, because the remainder must
be less than the divisor. In the overflow case, the program also returns a quotient equal to the
maximum unsigned integer, which may be an adequate indicator in some cases in which the remainder
1s not wanted.



The strange expression (-s >> 31) in the assignment to un32 1s supplied to make the program work for
the case s - o on machines that have mod 32 shifts (e.g., Intel x86).

Experimentation with uniformly distributed random numbers suggests that the bodies of the “again”
loops are each executed about 0.38 times for each execution of the function. This gives an execution
time, 1f the remainder is not wanted, of about 52 instructions. Of these instructions, one is number of
leading zeros, two are divide, and 6.5 are multiply (not counting the multiplications by », which are
shift’s). If the remainder is wanted, add six instructions (counting the store of r), one of which is
multiply.

What about a signed version of aiviu? It would probably be difficult to modify the code of Figure
9-3, step by step, to produce a signed variant. That algorithm, however, can be used for signed
division by taking the absolute value of the arguments, running «iviu, and then complementing the
result if the signs of the original arguments differ. There is no problem with extreme values such as
the maximum negative number, because the absolute value of any signed integer has a correct
representation as an unsigned integer. This algorithm is shown in Figure 9—4.

It is hard to devise really good code to detect overflow in the signed case. The algorithm shown in
Figure 9—4 makes a preliminary determination identical to that used by the unsigned long division

routine, which ensures that |u / v| < 232. After that, it is necessary only to ensure that the quotient has
the proper sign or is 0.

Click here to view code image

T T

unsigned divlu(unsigned ul, unsigned u0, unsigned v,
unsigned *r) {

const unsigned b = 65536; // Number base (16 bits).
unsigned unl, unO, // Norm. dividend LSD’s.
vnl, vnoO, // Norm. divisor digits.
gl, go, // Quotient digits.
un32, un2l, unlo, // Dividend digit pairs.
rhat; // A remainder.
int s; // Shift amount for norm.
if (ul >= v) { // If overflow, set rem.
if (r != NULL) // to an impossible value,
*r = OxFFFFFFFF; // and return the largest
return OxXFFFFFFFF; } // possible quotient.
s = nlz(v); // 0 <= s <= 31.
v = v << g; // Normalize divisor.
vnl = v >> 16; // Break divisor up into
vn0 = v & OxXFFFF; // two l6-bit digits.
un32 = (ul << s) | (u0 >> 32 - s8) & (-s >> 31);
unl0 = ul0 << s; // Shift dividend left.
unl = unl0 >> 16; // Break right half of
un0 = unl0 & OxFFFF; // dividend into two digits.
gl = un32/vnl; // Compute the first
rhat = un32 - gl*vnl; // quotient digit, gl.
againl:

if (gl >= Db || gl*vnO > b*rhat + unl) {
ql =ql - 1;



rhat = rhat + vnl;
if (rhat < b) goto againl;}

un2l = un32*b + unl - gl*v; // Multiply and subtract.

g0 = un21/vnl; // Compute the second

rhat = un2l1 - gO0*vnl; // quotient digit, go0.
again?2:

if (g0 >= Db || gO0*vnO0 > b*rhat + un0) {

gl = g0 - 1;
rhat = rhat + wvnl;
if (rhat < b) goto again2?;}

if (r != NULL) // If remainder is wanted,
*r = (un2l1l*b + un0 - g0*v) >> s; // return it.
return gl*b + gO0;
}

FIGURE 9-3. Divide long unsigned, using fullword division instruction.

Click here to view code image

¥ T

int divls (int ul, unsigned u0, int v, int *r) {
int g, uneg, vneg, diff, borrow;

uneg = ul >> 31; // -1 if u < 0.

if (uneg) A // Compute the absolute
u0 = -u0; // value of the dividend u.
borrow = (u0 !'= 0);
ul = -ul - borrow;}

vneg = v >> 31; // -1 if v < 0.

v = (v ~ vneg) - vneg; // Absolute value of v.

if ((unsigned)ul >= (unsigned)v) goto overflow;

g = divlu(ul, u0, v, (unsigned *)r);

diff = uneg ” vneg; // Negate g if signs of
q= (g ~ diff) - diff; // u and v differed.
if (uneg && r != NULL)
*r = —*r;
if ((diff ~ q) < 0 & g !'= 0) { // If overflow,
overflow: // set remainder
if (r != NULL) // to an impossible value,
*r = 0x80000000; // and return the largest
g = 0x80000000;} // possible neg. quotient.

return g;

}

FIGURE 9—4. Divide long signed, using divide long unsigned.
9—5 Doubleword Division from Long Division

This section considers how to do 64 ~ 64 = 64 division from 64 + 32 = 32 division, for both the
unsigned and signed cases. The algorithms that follow are most suited to a machine that has an



instruction for long division (64 + 32), at least for the unsigned case. It is also helpful if the machine
has the number of leading zeros instruction. The machine may have either 32-bit or 64-bit registers,
but we will assume that if it has 32-bit registers, then the compiler implements basic operations such
as adds and shifts on 64-bit operands (the “long long” data type in C).

These functions are known as “  udivdi3” and “ divdi3” in the GNU C world, and similar
names are used here.

Unsigned Doubleword Division
A procedure for this operation is shown in Figure 9-5.

Click here to view code image

T 1

unsigned long long udivdi3 (unsigned long long u,
unsigned long long v) {

unsigned long long u0O, ul, vl, g0, gl, k, n;

if (v >> 32 == 0) { // If v < 2**32:
if (u >> 32 < v) // If u/v cannot overflow,
return DIVU (u, V) // Jjust do one division.
& OxFFFFFFFE;
else { // If u/v would overflow:
ul = u >> 32; // Break u up into two
u0 = u & OxFFFFFFFF; // halves.
gl = DIVU(ul, v) // First quotient digit.
& OxXFFFEFFEFE;
k = ul - gl*v; // First remainder, < v.

g0 = DIVU((k << 32) + u0, v) // 2nd quot. digit.
& OXFFFFFFFF;
return (gl << 32) + g0;

// Here v >= 2**32.

n = nlz64(v); // 0 <= n <= 31.
vl = (v << n) >> 32; // Normalize the divisor
// so its MSB is 1.
ul = u >> 1; // To ensure no overflow.
gl = DIVU(ul, vl) // Get quotient from
& OXFFFFFFEFF; // divide unsigned insn.
g0 = (gl << n) >> 31; // Undo normalization and
// division of u by 2.
if (g0 != 0) // Make g0 correct or
q0 = g0 - 1; // too small by 1.
if ((u - g0*v) >= v)
q0 = g0 + 1; // Now g0 is correct.

return gO;

FIGURE 9-5. Unsigned doubleword division from long division.

This code distinguishes three cases: (1) the case in which a single execution of the machine’s
unsigned long division instruction (DIVU) can be used, (2) the case in which (1) does not apply, but
the divisor is a 32-bit quantity, and (3) the cases in which the divisor cannot be represented in 32
bits. It is not too hard to see that the above code is correct for cases (1) and (2). For case (2), think of



the grade-school method of doing long division.

Case (3), though, deserves proof, because it is very close to not working in some cases. Notice that
in this case only a single execution of DIVU is needed, but the number of leading zeros and multiply
operations are needed.

For the proof, we need these basics (for integer variables):

[ La/bl/d] = La/(bd) ] (2)
bla/b| = a—rem(a, b) (3)
From the first line in the section of the procedure of interest (we assume that v # 0),
0<n<3l.

In computing vy, the left shift clearly cannot overflow. Therefore,

-1_1-1 = Lvr/232—HJF and
u, = Lus2].
In computing g, #; and v, are in range for the DIVU instruction and it cannot overflow. Hence,
q1=Luy/ vy

In the first computation of g, the left shift cannot overflow because g, < 23? (because the maximum

value of u; is 2%° — 1 and the minimum value of v, is 23!). Therefore,
q0=19/2%" ).
Now, for the main part of the proof, we want to show that
(/v <go<|ul/vy+1,

which is to say, the first computation of ¢ is the desired result or is that plus 1.

Using Equation (2) twice gives

Using Equation (3) gives

" u
Gy = - :
? L’ —rem(v, 232 ”}J

Using algebra to get this in the form u / v + something:



do = F . urem{v,Zﬂ;’i) J
v w(v-=rem(v, 2°2—%))

F+5J,
-

S is largest when rem(v, 232 ~%) is as large as possible and, given that, when v is as small as
possible. The maximum value of rem(v, 232~ ") is 232~ — 1. Because of the way 7 is defined in terms
of v, v>2% -7 Thus, the smallest value of v having that remainder is

This 1s of the form

and we will now show that o6 < 1.

263—n+232—n_ 1.

Therefore,

5.5 u(232-7-1)
'_[263 n4_232 u__1)2ﬁ3 n

Lu(@¥2-n—1)
(263-m)2 ]
By inspection, for # in its range of 0 to 31,

LY

264'

Since u is at most 264 — 1, § < 1. Because ¢, = | u/v+5] and & < 1 (and obviously 6 > 0),

2Jsus(s]o

To correct this result by subtracting 1 when necessary, we would like to code

Click here to view code image

if (u < g0*v) g0 = g0 - 1;

(i.e., if the remainder u —gyv 1s negative, subtract 1 from ¢g,). However, this doesn’t quite work,

because g, v can overflow (e.g., for u = 2% — 1 and v = 232 + 3). Instead, we subtract 1 from g, so
that it is either correct or too small by 1. Then g, v will not overflow. We must avoid subtracting 1 if
q0=0 (if gy = 0, it 1s already the correct quotient).

Then the final correction is:

Click here to view code image
if ((u - g0*v) >= v) g0 = g0 - 1;

To see that this 1s a valid computation, we already noted that gyv does not overflow. It is easy to
show that

0<u—qyy <2v.



Ifv is very large (> 2%%), can the subtraction overflow by trying to produce a result greater than v?
No, because u < 2% and g, > 0.

Incidentally, there are alternatives to the lines

Click here to view code image

if (g0 != 0) // Make g0 correct or
g0 = g0 - 1 // too small by 1.

that may be preferable on some machines. One is to replace them with

Click here to view code image

if (g0 == 0) return 0;

Another is to place at the beginning of this section of the procedure, or at the beginning of the whole
procedure, the line

Click here to view code image

if (u < v) return 0; // Avoid a problem later.

These alternatives are preferable if branches are not costly. The code shown in Figure 9-5 works
well if the machine’s comparison instructions produce a 0/1 integer result in a general register. Then,
the compiler can change it to, in effect,

Click here to view code image

g0 = g0 - (g0 != 0);

(or you can code it that way if your compiler doesn’t do this optimization). This is just a compare and
subtract on such machines.

Signed Doubleword Division

In the signed case, there seems to be no better way to do doubleword division than to divide the
absolute values of the operands, using function waivais, and then negate the sign of the quotient if the
operands have different signs. Ifthe machine has a signed long division instruction, which we
designate here as DIVS, then it may be advantageous to single out the cases in which DIVS can be
used rather than invoking uaivaiz. This presumes that these cases are common. Such a function is
shown in Figure 9-6.

The “taerine” in the code in Figure 9—6 uses the GCC facility of enclosing a compound statement in
parentheses to construct an expression, a facility that most C compilers do not have. Some other
compilers may have 11aps (x) as a built-in function.

Click here to view code image

I 4

#define llabs(x) \
({unsigned long long t = (x) >> 63; ((x) ~ t) - t;})

long long divdi3(long long u, long long v) {

unsigned long long au, av;
long long g, t;



au llabs (u);

av = llabs(v);
if (av >> 31 == 0) { // If |v| < 2**31 and
if (au < av << 31) { // |ul/|v| cannot
g = DIVS(u, v); // overflow, use DIVS.

return (g << 32) >> 32;
}
}

q = au/av; // Invoke udivdi3.
t = (u ™ v) > 63; // If u, v have different
return (g ~ t) - t; // signs, negate q.

FIGURE 9-6. Signed doubleword division from unsigned double word division.

The test that v is in range is not precise; it misses the case in which v =231, If it is important to use
the DIVS instruction in that case, the test

Click here to view code image

if ((v << 32) >> 32 ==v) { // If v is in range and

can be used in place of the third executable line in Figure 9—6 (at a cost of one instruction). Similarly,
the test that |u| / |v| cannot overflow is simplified and a few “corner cases” will be missed; the code
amounts to using 6 = 0 in the signed division overflow test scheme shown in “Division” on page 34.

Exercises

1. Show that for real x, |x |=—T—x 1.

2. Find branch-free code for computing the quotient and remainder of modulus division on a basic
RISC that has division and remainder instructions for truncating division.

3. Similarly, find branch-free code for computing the quotient and remainder of floor division on a
basic RISC that has division and remainder instructions for truncating division.

4. How would you compute s/ d 1 for unsigned integers n andd, 0 <n <23 —1and 1 <d < 23?
— 1? Assume your machine has an unsigned divide instruction that computes |n/ d |.

5. Theorem D3 states that for x real and d an integer, || x| /d] =|x /dj. Show that, more
generally, if a function f(x) is (a) continuous, (b) monotonically increasing, and (c) has the
property that if f(x) is an integer then x is an integer, then | f{(| x |) | = [ f(x) | [GKP].



Chapter 10. Integer Division By Constants

On many computers, division is very time consuming and is to be avoided when possible. A value of
20 or more elementary add times is not uncommon, and the execution time is usually the same large
value even when the operands are small. This chapter gives some methods for avoiding the divide
instruction when the divisor is a constant.

10-1 Signed Division by a Known Power of 2

Apparently, many people have made the mistake of assuming that a shift right signed of k positions
divides a number by 2%, using the usual truncating form of division [GLS2]. It’s a little more
complicated than that. The code shown below computes ¢ = n =+ 2X, for 1 < k<31 [Hop].

Click here to view code image

shrsi t,n, k-1 Form the integer

shri t,t,32-k 2**k = 1 1f n < 0, else 0.
add t,n,t Add it to n,

shrsi g, t,k and shift right (signed).

It is branch free. It simplifies to three instructions in the common case of divisionby 2 (k = 1). It
does, however, rely on the machine’s being able to shift by a large amount in a short time. The case £

= 31 does not make too much sense, because the number 23! is not representable in the machine.

Nevertheless, the code does produce the correct result in that case (whichis ¢ =—1 ifn =—23land g =
0 for all other n).

To divide by —2*, the above code can be followed by a negate instruction. There does not seem to
be any better way to do it.

The more straightforward code for dividing by 2 is

Click here to view code image

bge n, label Branch if n >= 0.
addi n,n,2**k-1 Add 2**k - 1 to n,
label shrsi n,n,k and shift right (signed).

This would be preferable on a machine with slow shifts and fast branches.

PowerPC has an unusual device for speeding up division by a power of 2 [GGS]. The shift right
signed instructions set the machine’s carry bit if the number being shifted is negative and one or more
1-bits are shifted out. That machine also has an instruction for addingthe carry bit to a register,
denoted aaaze. This allows division by any (positive) power of 2 to be done in two instructions:

Click here to view code image

shrsi g,n,k
addze g, q

A single snrs: of k positions does a kind of signed division by 2% that coincides with both modulus
and floor division. This suggests that one of these might be preferable to truncating division for
computers and HLL’s to use. That is, modulus and floor division mesh with snrsi better than does



truncating division, permitting a compiler to translate the expressionzn / 2 to an snrsi. Furthermore,

snrsi followed by neg (negate) does modulus division by —2%, which is a hint that maybe modulus
division 1s best. (This 1s mainly an aesthetic issue. It is of little practical significance, because
division by a negative constant is no doubt extremely rare.)

10-2 Signed Remainder from Division by a Known Power of 2

If both the quotient and remainder of n + 2¥ are wanted, it is simplest to compute the remainder r from
r=n— q * 2* This requires only two instructions after computing the quotient ¢:

Click here to view code image

shli r,q,k
sub r,n,r
To compute only the remainder seems to require about four or five instructions. One way to

compute it is to use the four-instruction sequence above for signed division by 2¥, followed by the
two instructions shown immediately above to obtain the remainder. This results in two consecutive
shift instructions that can be replaced by an and, giving a solution in five instructions (four if k= 1):

Click here to view code image

shrsi t,n, k-1 Form the integer

shri t,t,32-k 2**k = 1 if n < 0, else O.
add t,n,t Add it to n,

andi t,t,-2**k clear rightmost k bits,
sub r,n,t and subtract it from n.

Another method 1s based on

n&(2k—1), n>0,

—((—n) & (2¥-1)), n<0.
To use this, first compute # < n = 31, and then

rem(n, 2%) = {

r— ((abs(n) & 2*-~1)) e ¢) —t
(five instructions) or, for k=1, since (—n) & 1=n & 1,
r—((n&l)er) —t

(four instructions). This method is not very good for £ > 1 if the machine does not have absolute
value (computing the remainder would then require six instructions).

Still another method 1s based on

n&(2¥-1), n=0,

rem(n, 2%) = {
((n+25— 1) & (2¥—1)) - (2¢=1), n<0.

This leads to

te(nsk-1)%32—k

re—((n+6)&(2¥-1)) -t



(five instructions for £ > 1, four for k= 1).
The above methods all work for 1 <k <31.

Incidentally, if shift right signed is not available, the value that is 2% — 1 for n <0 and 0 for n > 0
can be constructed from

M -‘\]

f]<—H}}J

r(t,<k)-t,
which adds only one instruction.

10-3 Signed Division and Remainder by Non-Powers of 2

The basic trick is to multiply by a sort of reciprocal of the divisor d, approximately 23%/d, and then to
extract the leftmost 32 bits of the product. The details, however, are more complicated, particularly
for certain divisors such as 7.

Let us first consider a few specific examples. These illustrate the code that will be generated by
the general method. We denote registers as follows:

n — the input integer (numerator)

v — loaded with a “magic number”
« - a temporary register

¢ - will contain the quotient

» - will contain the remainder

Division by 3
Click here to view code image
1i M, 0x55555556 Load magic number, (2**3242)/3.
mulhs q,M,n q = floor (M*n/2**32) .
shri t,n,31 Add 1 to g if
add a,q,t n is negative.
muli t,q,3 Compute remainder from
sub r,n,t r = n - g*3.

Proof. The multiply high signed operation (nuins) cannot overflow, as the product of two 32-bit
integers can always be represented in 64 bits and nu1ns gives the high-order 32 bits of the 64-bit

product. This is equivalent to dividing the 64-bit product by 232 and taking the floor of the result, and
this 1s true whether the product is positive or negative. Thus, for n > 0 the above code computes

oo (28] |5v52
3 23 3 3.2%

Now, n < 23!, because 23! — 1 is the largest representable positive number. Hence, the “error” term

2n/ (3 - 2%?) is less than 1/3 (and is nonnegative), so by Theorem D4 (page 183) we have g = n /3],
which is the desired result (Equation (1) on page 182).

For n <0, there i1s an addition of 1 to the quotient. Hence the code computes



2242 m | | 22n+2n+3.232| _ [2%2n+2n+1
3 2% 3.2% 3.2 |

where we have used Theorem D2. Hence
g = n,2ntl '
3 3.232

_l+ lﬁ £2.!*:-'4-ﬂ]£_ l“.

3 3.232 3.23 3.23%
The error term is nonpositive and greater than —1 / 3, so by Theorem D4 ¢ =Tn / 31, which is the
desired result (Equation (1) on page 182).

For 231 <n<-1,

This establishes that the quotient is correct. That the remainder is correct follows easily from the
fact that the remainder must satisfy

n=gqd+r,
the multiplication by 3 cannot overflow (because —23! /3 < ¢ < (23! — 1)/ 3), and the subtract cannot

overflow because the result must be in the range -2 to +2.

The multiply immediate can be done with two add’s, or a shift and an add, if either gives an
improvement in execution time.

On many present-day RISC computers, the quotient can be computed as shown above in nine or ten
cycles, whereas the divide instruction might take 20 cycles or so.
Division by 5
For division by 5, we would like to use the same code as for division by 3, except with a multiplier

of (232 + 4) / 5. Unfortunately, the error term is then too large; the result is off by 1 for about 1/5 of

the values of n > 2% in magnitude. However, we can use a multiplier of (233 + 3) / 5 and add a shift
right signed instruction. The code is

Click here to view code image

1i M, 0x66666667 Load magic number, (2**33+3)/5.
mulhs gq,M,n q = floor (M*n/2**32).

shrsi g,q,1

shri t,n,31 Add 1 to g if

add a,q,t n is negative.

muli t,q,5 Compute remainder from

sub r,n,t r =n - g*5.

Proof. The muins produces the leftmost 32 bits of the 64-bit product, and then the code shifts this
right by one position, signed (or “arithmetically”). This is equivalent to dividing the product by 233
and then taking the floor of the result. Thus, for n > 0 the code computes

_123¥+3n | _|n 3n
g= ==z -
5 28] |5 5.2%




For 0 <n < 23!, the error term 3n / 5 - 233 is nonnegative and less than 1/5, so by Theorem D4, g = |
nl/Sj.
For n <0, the above code computes

g = 27+3n 3 1 = "‘42'.-1-3\”4_1 :
5 933 5 5.233

The error term 1s nonpositive and greater than—1/5,sog=Tn/51.
That the remainder is correct follows as in the case of division by 3.
The multiply immediate can be done with a shift left of two and an add.

Division by 7

Dividing by 7 creates a new problem. Multipliers of (232 + 3) / 7 and (23 + 6) / 7 give error terms
that are too large. A multiplier of (23* + 5) / 7 would work, but it’s too large to represent in a 32-bit
signed word. We can multiply by this large number by multiplying by (234 + 5) / 7 — 232 (a negative
number), and then correcting the product by inserting an a«a. The code is

Click here to view code image

1i M,0x92492493 Magic num, (2**34+5)/7 - 2**32.

mulhs gq,M,n g = floor (M*n/2**32).

add q,d,n q = floor (M*n/2**32) + n.
shrsi g,q,?2 q = floor(g/4).

shri t,n,31 Add 1 to g if

add a,q,t n is negative.

muli t,q,7 Compute remainder from
sub r,n,t r =n - g*7.

Proof. 1t is important to note that the instruction +add 4,4,n~ above cannot overflow. This is because
g and n have opposite signs, due to the multiplication by a negative number. Therefore, this
“computer arithmetic” addition is the same as real number addition. Hence for n > 0 the above code
computes

7 2.32 = 232
L 5n J’
|7 723
where we have used the corollary of Theorem D3.

For 0 <n <231, the error term 51/ 7 - 2** is nonnegative and less than 1/7, sog=| n/ 7).
For n <0, the above code computes

g [234+5—232ji +n|/al+1 =B 3041
7 2% 77 7. 258

The error term 1s nonpositive and greater than—1/7,sog="Tn /71




The multiply immediate can be done with a shift left of three and a subtract.
10—4 Signed Division by Divisors > 2
At this point you may wonder if other divisors present other problems. We see in this section that they

do not; the three examples given illustrate the only cases that arise (for d > 2).

Some of the proofs are a bit complicated, so to be cautious, the work is done in terms of a general
word size W.

Given a word size W > 3 and a divisor d, 2 <d < 2"~ ! we wish to find the least integer m and
integer p such that

Bin | = LE for0<n<2W-1, and (1a)
| 27 d

mn|iq = 'ﬂ for—2¥-1<p<—1, (1b)
B d

with0 <m<2"and p > W.

The reason we want the least integer m 1s that a smaller multiplier may give a smaller shift amount
(possibly zero) or may yield code similar to the “divide by 5 example, rather than the “divide by 7”

example. We must have m < 2"~ 1 so the code has no more instructions than that of the “divide by 7”

example (that is, we can handle a multiplier in the range 2" ~! to 27— 1 by means of the -aa that was
inserted in the “divide by 7” example, but we would rather not deal with larger multipliers). We must
have p > W, because the generated code extracts the left half of the product mn, which is equivalent to
shifting right W positions. Thus, the total right shift is W or more positions.

There is a distinction between the multiplier m and the “magic number,” denoted M. The magic
number is the value used in the multiply instruction. It is given by

v = [m if0<m<2¥-1,
m—2%, if2W-l<m<2V.

Because (1b) must hold for n =—d,|—md/ 2P | + 1 =—1, which implies

};—f::- s (2)

Letn,. be the largest (positive) value of n such that rem(n,, d) =d — 1.n, exists because one
possibility is n, =d — 1. It can be calculated fromn, = 2"~ 1/d jd—1=2""1—rem2" 1, d) -
1. n, 1s one of the highest d admissible values of n, so

2F-1_d<n <2FW-1_1, (3a)
and, clearly

n.=d-—1. (3b)
Because (1a) must hold for n =n,



or
mn, n,+1
2 d
Combining this with (2) gives
2= 2Pn, + 1
—<Mm< = 4
d d n ®

Because m is to be the least integer satisfying (4), it is the next integer greater than 27 / d that is,

e 2F + d —rem(27, d (5)
d
Combining this with the right half of (4) and simplifying gives
27 > n_(d-rem(2°, d)). (6)

The Algorithm

Thus, the algorithm to find the magic number M and the shift amount s fromd is to first compute n_,

and then solve (6) for p by trying successively larger values. If p < W, set p = W (the theorem below
shows that this value of p also satisfies (6)). When the smallest p > W satisfying (6) 1s found, m is
calculated from (5). This is the smallest possible value of m, because we found the smallest
acceptable p, and from (4) clearly smaller values of p yield smaller values of m. Finally, s =p— W
and M 1s simply a reinterpretation of m as a signed integer (which is how the muins instruction
interprets it).

Forcing p to be at least W is justified by the following;

THEOREM DCI1. If(6) is true for some value of p, then it is true for all larger values of p.

Proof. Suppose (6) 1s true for p = p,. Multiplying (6) by 2 gives
2P0t > (2 d — 2rem(2P, d)).
From Theorem D5, rem(270 1, d) > 2rem(270, d) — d. Combining gives

2041 > (2~ (rem(220* L, d) + ), or
2P 041 >y (d —rem(2P0 1, d)).

Therefore, (6) 1s true for p =p, + 1, and hence for all larger values.

Thus, one could solve (6) by a binary search, although a simple linear search (starting with p = W)
1s probably preferable, because usually d is small, and small values of d give small values of p.

Proof That the Algorithm Is Feasible



We must show that (6) always has a solution and that 0 < m <2". (It is not necessary to show that p >
W, because that is forced.)

We show that (6) always has a solution by getting an upper bound on p. As a matter of general
interest, we also derive a lower bound under the assumption that p is not forced to be at least W. To
get these bounds on p, observe that for any positive integer x, there is a power of 2 greater than x and
less than or equal to 2x. Hence, from (6),

n.(d—rem(2?, d)) <2” <2n.((d —rem(2?, d)).
Because 0 <rem(2”,d) <d -1,

n,+1<27<2n.d. (7)
From (3a) and (3b), n. > max(2” ~ ! —d, d — 1). The lines f;(d) = 2" ! —d and f5(d) =d — 1 cross
atd= (2" -1+ 1) /2. Hence n, > (2”1 — 1) / 2. Because n, is an integer, n, > 2" 2. Because n,, d <
2"W=1_1, (7) becomes

2W 241 <2 <202V 1 - 1)?
or

W-1=p<2W-2. (8)
The lower bound p = W— 1 can occur (e.g., for W= 32, d = 3), but in that case we setp = W.
If p 1s not forced to equal W, then from (4) and (7),

Using (3b) gives
d—1+1

<m<2{n+1).
Because n, <271 -1 (3a),
2<m<2"-1.
If p 1s forced to equal W, then from (4),

27 20

d d n

Because 2 <d<2"-1 - 1andn,>2""2

pL IWIN-2 41
1] "z
SEMEIE1EY.
Hence in either case m is within limits for the code schema illustrated by the “divide by 7”
example.

ar



Proof That the Product Is Correct

We must show that if p and m are calculated from (6) and (5), then Equations (1a) and (1b) are
satisfied.

Equation (5) and inequality (6) are easily seen to imply (4). (In the case that p is forced to be equal
to W, (6) still holds, as shown by Theorem DCI1.) In what follows, we consider separately the
following five ranges of values of n:

0<n<n_,
ntlsns<n +d-1,
—n.<n<-1,
—n.—d+1<n<-n.—1, and
n=-n,—d.
From (4), because m is an integer,
Q_F{mgﬁ(nf-l— 1) - ]‘
d dn
Multiplying by n / 27, for n > 0 this becomes

c

n{mn{zp”?(”c*’ 1}—n
d 27~ 27dn,,

nl<|mn|<|n, @ -Dn|
d ¢ | |d  2Pdn,

For0<n<n,0<(2’-1)n/(2Pdn.) <1/d, so by Theorem D4,

n, (2P-Dn|_|n
d  2Pdn, LfJ'

Hence (1a) 1s satisfied in this case (0 <n <n,).

, S0 that

For n>n,, n is limited to the range

n.t1<n<n, +d-1, (9)
because n > n, +d contradicts the choice of n,. as the largest value of n such that rem(n_, d) =d — 1
(alternatively, from (3a), n > n,. + d implies n > 2"~ 1). From (4), for n >0,

_|_
g mn : .
d 27 d n,
By elementary algebra, this can be written

ot = =Y
n_mn " 1+{ﬁ‘ nJ)(n, l)‘

d 2° d dn,

(10)



From(9),1<n—-n,<d-1,so

0 {(n—nc)(nr-l- l)id_ T ey ]_
dn, d n,
Because n. > d — 1 (by (3b)) and (n,. + 1) / n,_ has its maximum when z_. has 1ts minimum,

0B n)m ) _d—1d—1+1_
dn d d-1

c

In (10), the term (n, + 1) / d is an integer. The term (n —n,)(n. + 1) / dn, is less than or equal to 1.

Therefore, (10) becomes
HEEee
d 2P d

For all n in the range (9), .n/ d | =(n.+ 1) / d. Hence, (1a) 1s satisfied in this case (n, +1<n <n, +
d-1).
For n <0, from (4) we have, because m is an integer,

1L

P 4 1 Em{g_!?n{&l
d d n
Multiplying by n / 27, for n <0 this becomes

o

E”c-+1{mn552p+]
d n, 2 d 28

_|_
et 1) g mn |y < BEEL L
d n, 2P - 2

n(n,+1)—dn,+1 L1<|mn +]{_H(2F+])_2Fd+] i
dn | 2P 2Pd

P

a5

or

Using Theorem D2 gives

dn B 2P d

Because n + 1 <0, the right inequality can be weakened, giving

n o n+1l
[VW%L%T ] gm. (11)

'y

[ﬂ(nﬁ-ﬂ)ﬂk mn +1{'n(2p+|)+|"_

For —n,.<n<-1,



_nc+]{ﬂ+]

< <0,
iz~ By -
i pmal
- = < 0.
5 dn

Hence, by Theorem D4,

so that (1b) 1s satisfied in this case (—n, <n <-1).

For n <—n_, n 1s limited to the range

=M d SRS~ (12)
(From (3a),n < —n, —d implies thatn < 2"~ 1 which is impossible.) Performing elementary
algebraic manipulation of the left comparand of (11) gives

{_”“_l+(”+”"}("‘f‘+I)H-‘g\_’ﬂ’Jﬂg[ﬂ. (13)
d dn, 2P d
For—-n.—d+1<n<-n,-1,
(—a‘+l}(n(.+])+ 1 _(rtn)m+D+1 - +D+1
dn, dn, dn - dn d

L& o c &

The ratio (n. + 1) / n, 1s a maximum when 7, 1s a minimum; that is, n, =d — 1.

Therefore,

Cd+D)(d-1+1), 1 _(+n)n+1)+]1

< 0,
dd—1) dn, dn, =0 o
Sl (n+n)n,+1)+1 P
dn

c

From (13), because (—n,.— 1) / d is an integer and the quantity added to it is between