Notes for CSC 310, Radford M. Neal, 2002

Proving that Binary Huffman
Codes are Optimal

We can prove that the binary Huffman code
procedure produces optimal codes by
induction on the number of symbols, q.

For ¢ = 2, the code produced is obviously
optimal — you can't do better than using one
bit to code each symbol.

For ¢ > 2, we assume that the procedure
produces optimal codes for any alphabet of
size ¢ — 1 (with any symbol probabilities),
and then prove that it does so for alphabets
of size ¢ as well.

The Induction Step

Suppose the Huffman procedure produces
optimal codes for alphabets of size ¢ — 1.

Let L be the average length of the code
produced by the procedure when it is applied
to the source S, with ¢ symbols, sg, ..., sq,
having probabilities p1, ..., pg. Without loss of
generality, let's assume that p; > p,_1 > pq for
all i e {1,...,9—2}.

The recursive call in the procedure will have
produced a code for the source S’, with ¢ — 1
symbols, s1, ..., sq—2, s’, having probabilities
D1, -y Pg—2, P/, With p' =p,_1 + pg. By the
induction hypothesis, this code is optimal. Let
its average length be L'.

The Induction Step (Continued)

Suppose some other instantaneous code for §
had average length less than L. We can
modify this code so that the codewords for
8q—1 and sq are “siblings” — ie, they have the
form z0 and z1, for some z € Tt, while
keeping its average length the same, or
smaller.

Let the average length of this modified code
be E, which must also be less than L.

From this modified code, we can produce a
code for S’. We keep the codewords for

81, .-+, 8¢—2 the same, and encode s’ as z.
Let the average length of this code be .

The Induction Step (Conclusion)

We now have two codes for S and two for S'.
The average lengths of these codes satisfy the
following equations:

L = L'4+pi1+pg

r +pq—1 + pq

Why? The codes for S are like the codes for
S’, except that one symbol is replaced by two,
whose codewords are one bit longer. So the
average length of the code for S is the same
as that for S’, except for the increase due to
this one bit, which is added with probability

P =pg—1+pq-

~

L =

Since L' is the optimal average length, L' < L'.
From these equations, we then see that L < I,
which contradicts the supposition that T < L.

The Huffman procedure therefore produces
optimal codes for alphabets of size q. By
induction, this is true for all q.

3b.

1




Notes for CSC 310, Radford M. Neal, 2002

What Have We Accomplished?

We seem to have solved the main problem:
We now know how to construct an optimal
code for any source.

But: This code is optimal only if the
assumptions we made in formalizing the
problem match the real situation.

Often they don't:
e Symbol probabilities may vary over time.
e Symbols may not be independent.

e There is usually no reason to require that
X1, Xo, X3, ... be encoded one symbol at
a time, as C(X1)C(X2)C(X3) .

We would require the last if we really needed

instantaneous decoding, but usually we don't.

Example: Black-and-White Images

Recall the example from the first lecture, of
black-and-white images. There are only two
symbols — “white” and “black”. The
Huffman code is white — 0, black — 1.

This is just the obvious code. But we saw
that various schemes such as run length
coding can do better than this.

Partly, this is because the pixels are not
independent. Even if they were independent,
however, we would expect to be able to
compress the image if black pixels are much
less common than white pixels.

Solution: Coding Blocks of Symbols

We can do better by using Huffman codes to
encode blocks of symbols.

Suppose our source probabilities are 0.7 for
white and 0.3 for black. Assuming pixels are
independent, the probabilities for blocks of
two pixels will be

white white 0.7 x 0.7 = 0.49

white black 0.7 x 0.3 =0.21
black white 0.3 x 0.7 = 0.21
black black 0.3 x 0.3 =0.09

Here's a Huffman code for these blocks:
WW—0, WB~ 10, BW — 110, BB+ 111

The average length for this code is 1.81,
which is less than the two bits needed to
encode a block the obvious way.

How Well Can We Do Using Blocks?

If we use blocks of more than two pixels, can
we do even better?

If so, what is the limit to how well we can do,
using bigger and bigger blocks?

These questions will lead us to the concept of
entropy, which measures how well we can
possibly compress data.

3b. 2




