From c5fcf7179a83ef65c86c6a4a390029149e518649 Mon Sep 17 00:00:00 2001 From: Franciszek Malinka Date: Tue, 5 Oct 2021 21:49:54 +0200 Subject: Duzy commit ze smieciami --- semestr-3/anm/pracownia2/brut.jl | 177 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 177 insertions(+) create mode 100644 semestr-3/anm/pracownia2/brut.jl (limited to 'semestr-3/anm/pracownia2') diff --git a/semestr-3/anm/pracownia2/brut.jl b/semestr-3/anm/pracownia2/brut.jl new file mode 100644 index 0000000..d8eb0a1 --- /dev/null +++ b/semestr-3/anm/pracownia2/brut.jl @@ -0,0 +1,177 @@ +using LinearAlgebra +using Polynomials +using Printf +using OffsetArrays +using FFTW + +function emptyArray(type, size) + return OffsetVector{type}(undef, 0:(size - 1)) +end + +function naive_cc(f, N) + a = emptyArray(Float64, Int(N) + 1) + for j in 0.0:1.0:N + for k in 0.0:1.0:N + u = cos(k * pi / N) + uj = cos(j * k * pi / N) + val = f(u) * uj + if k == 0 || k == N + val /= 2.0 + end + a[Int(j)] += val + end + end + return a * (2.0 / N) +end + +function naive_approx(f, N) + b = emptyArray(Float64, N) + a = naive_cc(f, N) + a[0] /= 2.0 + a[N] /= 2.0 + + print(a) + result = 0.0 + + for k in 0:2:N + result += a[k] / Float64(1 - k * k) + end + return result * 2.0 +end + +function naive_approx2(f, N) + b = emptyArray(Float64, N) + N = Float64(N) + a = naive_cc(f, N) + result = 0.0 + + for k in 1:1:Int(floor(N / 2.0)) + b[2 * k - 1] = a[2 * k - 2] - a[2 * k] + b[2 * k - 1] /= (Float64(k) * 4.0 - 2.0) + result += b[2 * k - 1] + end + return result * 2.0 +end + +function smart_cc(f, N) + x = [cos(pi * i / N) for i in 0:N] + fx = f.(x) / (2 * N) + g = real(fft(vcat(fx, fx[N:-1:2]))) + a = [g[1] * 2; g[2:N] + g[(2 * N):-1:(N + 2)]; g[N + 1] * 2] + return a +end + +function clenshaw_curtis_coeffs(f, N) + x = [cos(pi * i / N) for i in 0:N] + fx = f.(x) / (2 * N) + g = real(fft(vcat(fx, fx[N:-1:2]))) + return [g[1]; g[2:N] + g[(2 * N):-1:(N + 2)]; g[N + 1]] +end + +function clenshaw_curtis(f, N) + a = clenshaw_curtis_coeffs(f, N) + w = zeros(length(a)) + w[1:2:end] = 2 ./ (1 .- (0:2:N).^2 ) + # w oraz a są malejące, więc lepiej dodawać ich iloczyny od końca + LinearAlgebra.dot(reverse(w), reverse(a)) +end + +global MAX_ITER = 2^18 + +function clenshaw_curtis_with_eps(f, eps) + N = 4 + while N <= MAX_ITER + res1 = clenshaw_curtis(f, N) + res2 = clenshaw_curtis(f, N - 1) + if abs(res1 - res2) < eps * res1 || N >= MAX_ITER + return res1 + end + N *= 2 + end +end + + +# zera n-tego wielomianu Czebyszewa +function chebyshev_nodes(n) + return [cos((2.0 * k - 1.0) * pi / (2.0 * n)) for k in 1:n] +end + +# kwadratura Czebyszewa-Gaussa +# współczynniki stałe równe π/N +# węzły to zera n-tego wielomianu Czebyszewa +function gauss_chebyshev(f, N) + x = chebyshev_nodes(N) + res = 0.0 + for i in 1:N + res += f(x[i]) * sqrt(1.0 - x[i] * x[i]) + end + return res * pi / N +end + +# kwadratura Gaussa-Legendre'a: +# współczynniki w_i = 2(q_1,i)^2, gdzie q_1,i to pierwsza współrzędna +# i-tego wektora własnego macierzy trójprzekątniowej +# węzły x_i to zera N-tego wielomianu Legendre'a +function gauss_legendre(f, N) + # wyliczanie wartości i wektorów własnych macierzy trójprzekątniowej + # (Golub-Welsch algorithm) + # wartości własne to zera wielomianu Legendre'a + X, Q = eigen(SymTridiagonal(zeros(N), [n / sqrt(4.0n^2 - 1.0) for n = 1:N - 1])) + + res = 0.0 + for i in 1:N + w = 2.0 * (Q[1, i])^2 + res += f(X[i]) * w + end + + return res +end + +# uruchamianie kwadratury dla funkcji f, N węzłów, +# na przedziale (a, b) +function quadrature(f, quadrature_fun, N=ITER, a=-1.0, b=1.0) + return (b - a) / 2 * quadrature_fun(x -> f(x * (b - a) / 2 + (a + b) / 2), N) +end + +# Testowanie------------------------------------------------------------- + +funs = [exp, x -> 1.0 / ((x - 1.01) * (x - 1.01)), x -> 10x^4 + 4x^3 + 2x - 1, x -> cos(1000.0x), + x -> (3x^2 + 4) / (x - 1.1), abs, x -> 1.0, x -> cos(100.0x) * cos(100.0x), x -> 1 / (x^4 + x^2 + 0.9), + x -> 1.0 / (1.0 + x^4), x -> 2.0 / (2.0 + sin(10pi * x))] + +# f - całka nieoznaczona +# obliczanie całki oznaczonej na przedziale (a, b) +function definete(f) + return (a, b) -> f(b) - f(a) +end + + +# ręcznie policzone całki oznaczone (lub obliczone wyniki) +# dla testowanych funkcji +results = [definete(exp), definete(x -> 1.0 / (1.01 - x)), definete(x -> 2x^5 + x^4 + x^2 - x), definete(x -> sin(1000.0x) / 1000.0), + definete(x -> 1.5x^2 + 3.3x + 7.63log(abs(x - 1.1))), definete(x -> (x >= 0) ? ((x^2) / 2.0) : (-(x^2) / 2.0)), definete(x -> x), + definete(x -> (200.0x + sin(200.0x)) / 400.0), definete(x -> -0.278185log(x^2 - 0.947294x + 0.948683) + + 0.278185log(x^2 + 0.947294x + 0.948683) + 0.309633atan(0.587487 * (2x - 0.947294)) + 0.309633atan(0.587487 * (2.0x + 0.947294))), + definete(x -> 1.0 / (4.0 * sqrt(2)) * (-log(abs(x^2 - sqrt(2)x + 1)) + log(abs(x^2 + sqrt(2)x + 1)) - 2.0atan(1 - sqrt(2)x) + + 2.0atan(1 + sqrt(2)x))), (a, b) -> 4.0 / sqrt(3)] + + +function rel_error(a, b) + return abs((a - b) / a) +end + +function test(quadrature_fun, fun_nr, a=-1.0, b=1.0, N=ITER) + my_res = quadrature(funs[fun_nr], quadrature_fun, N, a, b) + rel_e = rel_error(results[fun_nr](a, b), my_res) + abs_e = abs(results[fun_nr](a, b) - my_res) + + return (rel_e, abs_e) +end + +function print_coefficients_of_cc(f, N, ile_pierwszych) + a = clenshaw_curtis_coeffs(f, N) + for i in 1:ile_pierwszych + # println(string(i - 1, " & ", a[i], " \\\\")) + @printf("%d & %.20f \\\\\n", i - 1, a[i]) + end +end \ No newline at end of file -- cgit v1.2.3