From c5fcf7179a83ef65c86c6a4a390029149e518649 Mon Sep 17 00:00:00 2001 From: Franciszek Malinka Date: Tue, 5 Oct 2021 21:49:54 +0200 Subject: Duzy commit ze smieciami --- Semestr 3/anm/pracownia2/brut.jl | 177 --------------------------------------- 1 file changed, 177 deletions(-) delete mode 100644 Semestr 3/anm/pracownia2/brut.jl (limited to 'Semestr 3/anm/pracownia2') diff --git a/Semestr 3/anm/pracownia2/brut.jl b/Semestr 3/anm/pracownia2/brut.jl deleted file mode 100644 index d8eb0a1..0000000 --- a/Semestr 3/anm/pracownia2/brut.jl +++ /dev/null @@ -1,177 +0,0 @@ -using LinearAlgebra -using Polynomials -using Printf -using OffsetArrays -using FFTW - -function emptyArray(type, size) - return OffsetVector{type}(undef, 0:(size - 1)) -end - -function naive_cc(f, N) - a = emptyArray(Float64, Int(N) + 1) - for j in 0.0:1.0:N - for k in 0.0:1.0:N - u = cos(k * pi / N) - uj = cos(j * k * pi / N) - val = f(u) * uj - if k == 0 || k == N - val /= 2.0 - end - a[Int(j)] += val - end - end - return a * (2.0 / N) -end - -function naive_approx(f, N) - b = emptyArray(Float64, N) - a = naive_cc(f, N) - a[0] /= 2.0 - a[N] /= 2.0 - - print(a) - result = 0.0 - - for k in 0:2:N - result += a[k] / Float64(1 - k * k) - end - return result * 2.0 -end - -function naive_approx2(f, N) - b = emptyArray(Float64, N) - N = Float64(N) - a = naive_cc(f, N) - result = 0.0 - - for k in 1:1:Int(floor(N / 2.0)) - b[2 * k - 1] = a[2 * k - 2] - a[2 * k] - b[2 * k - 1] /= (Float64(k) * 4.0 - 2.0) - result += b[2 * k - 1] - end - return result * 2.0 -end - -function smart_cc(f, N) - x = [cos(pi * i / N) for i in 0:N] - fx = f.(x) / (2 * N) - g = real(fft(vcat(fx, fx[N:-1:2]))) - a = [g[1] * 2; g[2:N] + g[(2 * N):-1:(N + 2)]; g[N + 1] * 2] - return a -end - -function clenshaw_curtis_coeffs(f, N) - x = [cos(pi * i / N) for i in 0:N] - fx = f.(x) / (2 * N) - g = real(fft(vcat(fx, fx[N:-1:2]))) - return [g[1]; g[2:N] + g[(2 * N):-1:(N + 2)]; g[N + 1]] -end - -function clenshaw_curtis(f, N) - a = clenshaw_curtis_coeffs(f, N) - w = zeros(length(a)) - w[1:2:end] = 2 ./ (1 .- (0:2:N).^2 ) - # w oraz a są malejące, więc lepiej dodawać ich iloczyny od końca - LinearAlgebra.dot(reverse(w), reverse(a)) -end - -global MAX_ITER = 2^18 - -function clenshaw_curtis_with_eps(f, eps) - N = 4 - while N <= MAX_ITER - res1 = clenshaw_curtis(f, N) - res2 = clenshaw_curtis(f, N - 1) - if abs(res1 - res2) < eps * res1 || N >= MAX_ITER - return res1 - end - N *= 2 - end -end - - -# zera n-tego wielomianu Czebyszewa -function chebyshev_nodes(n) - return [cos((2.0 * k - 1.0) * pi / (2.0 * n)) for k in 1:n] -end - -# kwadratura Czebyszewa-Gaussa -# współczynniki stałe równe π/N -# węzły to zera n-tego wielomianu Czebyszewa -function gauss_chebyshev(f, N) - x = chebyshev_nodes(N) - res = 0.0 - for i in 1:N - res += f(x[i]) * sqrt(1.0 - x[i] * x[i]) - end - return res * pi / N -end - -# kwadratura Gaussa-Legendre'a: -# współczynniki w_i = 2(q_1,i)^2, gdzie q_1,i to pierwsza współrzędna -# i-tego wektora własnego macierzy trójprzekątniowej -# węzły x_i to zera N-tego wielomianu Legendre'a -function gauss_legendre(f, N) - # wyliczanie wartości i wektorów własnych macierzy trójprzekątniowej - # (Golub-Welsch algorithm) - # wartości własne to zera wielomianu Legendre'a - X, Q = eigen(SymTridiagonal(zeros(N), [n / sqrt(4.0n^2 - 1.0) for n = 1:N - 1])) - - res = 0.0 - for i in 1:N - w = 2.0 * (Q[1, i])^2 - res += f(X[i]) * w - end - - return res -end - -# uruchamianie kwadratury dla funkcji f, N węzłów, -# na przedziale (a, b) -function quadrature(f, quadrature_fun, N=ITER, a=-1.0, b=1.0) - return (b - a) / 2 * quadrature_fun(x -> f(x * (b - a) / 2 + (a + b) / 2), N) -end - -# Testowanie------------------------------------------------------------- - -funs = [exp, x -> 1.0 / ((x - 1.01) * (x - 1.01)), x -> 10x^4 + 4x^3 + 2x - 1, x -> cos(1000.0x), - x -> (3x^2 + 4) / (x - 1.1), abs, x -> 1.0, x -> cos(100.0x) * cos(100.0x), x -> 1 / (x^4 + x^2 + 0.9), - x -> 1.0 / (1.0 + x^4), x -> 2.0 / (2.0 + sin(10pi * x))] - -# f - całka nieoznaczona -# obliczanie całki oznaczonej na przedziale (a, b) -function definete(f) - return (a, b) -> f(b) - f(a) -end - - -# ręcznie policzone całki oznaczone (lub obliczone wyniki) -# dla testowanych funkcji -results = [definete(exp), definete(x -> 1.0 / (1.01 - x)), definete(x -> 2x^5 + x^4 + x^2 - x), definete(x -> sin(1000.0x) / 1000.0), - definete(x -> 1.5x^2 + 3.3x + 7.63log(abs(x - 1.1))), definete(x -> (x >= 0) ? ((x^2) / 2.0) : (-(x^2) / 2.0)), definete(x -> x), - definete(x -> (200.0x + sin(200.0x)) / 400.0), definete(x -> -0.278185log(x^2 - 0.947294x + 0.948683) + - 0.278185log(x^2 + 0.947294x + 0.948683) + 0.309633atan(0.587487 * (2x - 0.947294)) + 0.309633atan(0.587487 * (2.0x + 0.947294))), - definete(x -> 1.0 / (4.0 * sqrt(2)) * (-log(abs(x^2 - sqrt(2)x + 1)) + log(abs(x^2 + sqrt(2)x + 1)) - 2.0atan(1 - sqrt(2)x) - + 2.0atan(1 + sqrt(2)x))), (a, b) -> 4.0 / sqrt(3)] - - -function rel_error(a, b) - return abs((a - b) / a) -end - -function test(quadrature_fun, fun_nr, a=-1.0, b=1.0, N=ITER) - my_res = quadrature(funs[fun_nr], quadrature_fun, N, a, b) - rel_e = rel_error(results[fun_nr](a, b), my_res) - abs_e = abs(results[fun_nr](a, b) - my_res) - - return (rel_e, abs_e) -end - -function print_coefficients_of_cc(f, N, ile_pierwszych) - a = clenshaw_curtis_coeffs(f, N) - for i in 1:ile_pierwszych - # println(string(i - 1, " & ", a[i], " \\\\")) - @printf("%d & %.20f \\\\\n", i - 1, a[i]) - end -end \ No newline at end of file -- cgit v1.2.3