aboutsummaryrefslogtreecommitdiff
path: root/src/solver.cpp
blob: d05771afa16eeda79e7a4fef2755251bc64fa9fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#include <queue>
// #include <priority_queue>
#include <iostream>
#include <algorithm>
#include "solver.hpp"

Solver::Solver(uint32_t pruning_tab_depth) {
  pruning_table = kh_init_cube();
  visited_states = kh_init_cube(); 

  generate_pruning_table(pruning_tab_depth);
}

Solver::~Solver() {
  kh_destroy_cube(pruning_table);
  kh_destroy_cube(visited_states);
}

void Solver::generate_pruning_table(uint32_t depth) {
  std::cerr << "Generating pruning table...\n";
  cube_t initial, cube, rotated;
  rot_cnt_t rot_cnt;
  uint16_t rot, cnt;
  int ret;
  khint_t k;
  std::queue<cube_t> q;

  init_cube(&initial);
  k = kh_put_cube(pruning_table, initial, &ret);
  kh_val(pruning_table, k) = build_rot_cnt(NULL_ROT, 0);

  q.push(initial);

  while(!q.empty()) {
	cube = q.front();
	q.pop();

	k = kh_get_cube(pruning_table, cube);
	rot_cnt = kh_val(pruning_table, k);
	cnt = get_cnt(rot_cnt);
	if (cnt >= depth) 
	  continue;
	
	for (rot = ROT_R; rot != NULL_ROT; rot++) {
	  rotated = cube;
	  perform_rotation(&rotated, (rotations)rot); 
	  
	  k = kh_get_cube(pruning_table, rotated);
	  if (k == kh_end(pruning_table)) {
		k = kh_put_cube(pruning_table, rotated, &ret);	
		kh_val(pruning_table, k) = build_rot_cnt(rot, cnt+1);
		q.push(rotated);
	  }
	}
  }

  std::cerr << "Generated\n";
}

std::vector<rotations> Solver::get_solve_pruning(cube_t cube) {
  khiter_t k;
  cube_t initial;
  rotations rot, rev_rot;
  std::vector<rotations> result(0);
  init_cube(&initial);

  k = kh_get_cube(pruning_table, cube);
  if (k == kh_end(pruning_table)) {
	return result;
  }

  while (!kh_cube_hash_equal(cube, initial)) {
	rot = get_rot(kh_val(pruning_table, k));
	rev_rot = reverse_rotation(rot);	
	result.push_back(rev_rot);

	perform_rotation(&cube, rev_rot);
	k = kh_get_cube(pruning_table, cube);
  }

  return result;
}

#define TILE_VAL(i) (face>>((i)<<2)&0xf)
#define CMP_TILES(i, j) (uint32_t)(!!(TILE_VAL(i)==TILE_VAL(j)))

/* Count number of neibourgh tiles of the same color */
__attribute__((optimize("unroll-loops")))
heur_t Solver::heuristic(const cube_t cube, const uint16_t moves_cnt) {
  heur_t value = 0;
  int i, j;
  face_t face;
  for (i = 0; i < 6; i++) {
	face = cube.faces[i];
	for (j = 0; j < 7; j++)
	  value += CMP_TILES(j,j+1);
	value += CMP_TILES(7,0);
	for (j = 0; j < 4; j++)
	  value += (TILE_VAL((j<<1)+1)==i);
  }

  /* This is absolutely random */
  return value * 2 - moves_cnt * 3;
}

typedef std::pair<cube_t, heur_t> qentry_t;
class Comp {
public:
  bool operator()(const qentry_t &e1, const qentry_t &e2) {
	return e1.second < e2.second;
  }
};

std::vector<rotations> Solver::retrieve_solution(cube_t cube) {
  std::vector<rotations> result;
  rot_cnt_t rot_cnt;
  rotations rot, rev_rot;
  khiter_t k;

  k = kh_get_cube(visited_states, cube);
  assert(k != kh_end(visited_states));
  rot_cnt = kh_val(visited_states, k);

  while ((rot = get_rot(rot_cnt)) != NULL_ROT) {
	rev_rot = reverse_rotation(rot); 
	result.push_back(rot);
	perform_rotation(&cube, rev_rot);

	k = kh_get_cube(visited_states, cube);
	rot_cnt = kh_val(visited_states, k);
  }


  std::reverse(result.begin(), result.end());
  return result;
}

std::vector<rotations> Solver::solve(const cube_t cube) {
  cube_t state = cube;
  cube_t new_state;
  khiter_t k;
  rot_cnt_t rot_cnt;
  uint16_t cur_cnt;
  int rot, ret;
  bool found_solution = false;
  std::priority_queue<qentry_t, std::vector<qentry_t>, Comp> pq;
  
  kh_clear_cube(visited_states);
  k = kh_put_cube(visited_states, state, &ret);
  kh_val(visited_states, k) = build_rot_cnt(NULL_ROT, 0);

  pq.push({state, heuristic(cube, 0)});

  while (!found_solution) {
	auto cur = pq.top();
	pq.pop();
	state = cur.first;
	// std::cerr << "Current state:\n";
	// dump_cube_grid(&state);

	k = kh_get_cube(visited_states, state);
	cur_cnt = get_cnt(kh_val(visited_states, k));

	for (rot = ROT_R; rot < NULL_ROT; rot++) {
	  new_state = state;
	  perform_rotation(&new_state, (rotations)rot);

	  k = kh_get_cube(pruning_table, new_state);
	  /* Found the cube in pruning table! We got it :D */
	  if (k != kh_end(pruning_table)) {
		state = new_state;
		found_solution = true;
		k = kh_put_cube(visited_states, new_state, &ret);
		kh_val(visited_states, k) = build_rot_cnt(rot, cur_cnt+1);
		break;
	  }

	  k = kh_get_cube(visited_states, new_state);

	  /* This state was already visited.
	   * Maybe we found a shorter path? */
	  if (k != kh_end(visited_states)) {
		rot_cnt = kh_val(visited_states, k);
		if (get_cnt(rot_cnt) > cur_cnt + 1) {
		  kh_val(visited_states, k) = build_rot_cnt(rot, cur_cnt+1);
		}
	  }
	  /* This is a new unvisited state! */
	  else {
		k = kh_put_cube(visited_states, new_state, &ret);
		kh_val(visited_states, k) = build_rot_cnt(rot, cur_cnt+1);
		pq.push({new_state, heuristic(new_state, cur_cnt+1)});
	  }
	}
  }

  std::cerr << "Found solution!\n" << "\n";
  auto res = retrieve_solution(state);
  auto prun_res = get_solve_pruning(state);
  //std::cerr << prun_res.size() << "\n";
  res.insert(res.end(), prun_res.begin(), prun_res.end()); 
  return res;
}