aboutsummaryrefslogtreecommitdiff
path: root/lic_malinka.tex
blob: adaaf916f4847659c517de50fedb30b14c1c5a07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
\documentclass[11pt, a4paper, final]{amsart}
\setlength{\emergencystretch}{2em}


\usepackage[T1]{fontenc}
\usepackage{mathtools}
\usepackage[activate={true,nocompatibility},final,tracking=true,kerning=true,spacing=true,stretch=10,shrink=10]{microtype}
\microtypecontext{spacing=nonfrench}
% \usepackage[utf8]{inputenc}

\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{XCharter}
\usepackage[charter,expert, greekuppercase=italicized, greekfamily=didot]{mathdesign}
\usepackage{mathtools}
\usepackage{enumitem}
\usepackage[utf8]{inputenc}
\usepackage{tikz-cd}
\usepackage{tikz}

\usepackage{etoolbox}


\usepackage{xcolor}
\definecolor{green}{RGB}{0,127,0}
\definecolor{redd}{RGB}{191,0,0}
\definecolor{red}{RGB}{105,89,205}
\usepackage[colorlinks=true]{hyperref}

\usepackage[notref, notcite]{showkeys}
\usepackage[cmtip,arrow]{xy}
%\usepackage[backend=biber,
%url=false,
%isbn=false,
%backref=true,
%citestyle=alphabetic,
%bibstyle=alphabetic,
%autocite=inline,
%maxnames=99,
%minalphanames=4,
%maxalphanames=4,
%sorting=nyt,]{biblatex}
%\addbibresource{linear_strucures.bib}

\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\Stab}{Stab}
\DeclareMathOperator{\st}{st}
\DeclareMathOperator{\Flim}{FLim}

\newcommand{\cupdot}{\mathbin{\mathaccent\cdot\cup}}
\newcommand{\cC}{\mathcal C}
\newcommand{\bN}{\mathbb N}
\newcommand{\bR}{\mathbb R}
\newcommand{\bZ}{\mathbb Z}
\newcommand{\bQ}{\mathbb Q}

\DeclareMathOperator{\im}{{Im}}
\DeclareMathOperator{\lin}{{Lin}}
\DeclareMathOperator{\Th}{{Th}}
\DeclareMathOperator{\Int}{{Int}}

\newtheorem{theorem}{Theorem}
\numberwithin{theorem}{section}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{fact}[theorem]{Fact}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{question}[theorem]{Question}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem*{theorem2}{Theorem}
\newtheorem*{claim2}{Claim}
\newtheorem*{corollary2}{Corollary}
\newtheorem*{question2}{Question}
\newtheorem*{conjecture2}{Conjecture}


\newtheorem{clm}{Claim}
\newtheorem*{clm*}{Claim}


\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem*{definition2}{Definition}
\newtheorem{example}[theorem]{Example}

\theoremstyle{remark}
\newtheorem{remark}[theorem]{Remark}
\newtheorem*{remark2}{Remark}


\AtEndEnvironment{proof}{\setcounter{clm}{0}}
\newenvironment{clmproof}[1][\proofname]{\proof[#1]\renewcommand{\qedsymbol}{$\square$(claim)}}{\endproof}

\newcommand{\xqed}[1]{%
    \leavevmode\unskip\penalty9999 \hbox{}\nobreak\hfill
    \quad\hbox{\ensuremath{#1}}}


\title{Tytuł}
\author{Franciszek Malinka}

\begin{document}

    \begin{abstract}
        Abstract
    \end{abstract}
    \section{Introduction}

    \section{Preliminaries}
    \subsection{Descriptive set theory}
    \begin{definition}
        Suppose $X$ is a topological space and $A\subseteq X$. We say that $A$ is \emph{meagre} in $X$ if $A = \bigcup_{n\in\bN}A_n$, where $A_n$ are nowhere dense subsets of $X$ (i.e. $\Int(\bar{A_n}) = \emptyset$). 
    \end{definition}

    \begin{definition}
        We say that $A$ is \emph{comeagre} in $X$ if it is a complement of a meager set. Equivalently, a set is comeagre iff it contains a countable intersection of open dense sets.
    \end{definition}
    
    % \begin{example}
    Every countable set is nowhere dense in any $T_1$ space, so, for example, $\bQ$ is meager in $\bR$ (though being dense), which means that the set of irrationals is comeagre. Another example is...
    % \end{example}

    \begin{definition}
        We say that a topological space $X$ is a \emph{Baire space} if every comeagre subset of $X$ is dense in $X$ (equivalently, every meagre set has empty interior).
    \end{definition}

    \begin{definition}
        Suppose $X$ is a Baire space. We say that a property $P$ \emph{holds generically} for a point in $x\in X$ if $\{x\in X\mid P\textrm{ holds for }x\}$ is comeagre in $X$.
    \end{definition}
    
    \begin{definition}
        Let $X$ be a nonempty topological space and let $A\subseteq X$. The \emph{Banach-Mazur game of $A$}, denoted as $G^{\star\star}(A)$ is defined as follows: Players $I$ and $II$ take turns in playing nonempty open sets $U_0, V_0, U_1, V_1,\ldots$ such that $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq\ldots$. We say that player $II$ wins the game if $\bigcap_{n}V_n \subseteq A$.
    \end{definition}

    There is an important theorem on the Banach-Mazur game: $A$ is comeagre
    iff $II$ can always choose sets $V_0, V_1, \ldots$ such that it wins. Before we prove it we need to define notions necessary to formalize this theorem.
    
    \begin{definition}
        $T$ is \emph{the tree of all legal positions} in the Banach-Mazur game $G^{\star\star}(A)$ when $T$ consists of all finite sequences $(W_0, W_1,\ldots, W_n)$, where $W_i$ are nonempty open sets such that $W_0\supseteq W_1\supseteq\ldots\supseteq W_n$. In another words, $T$ is a pruned tree on $\{W\subseteq X\mid W \textrm{is open nonempty}\}$. 
    
        By $[T]$ we denote the set of all "infinite branches" of $T$, i.e. infinite sequences $(U_0, V_0, \ldots)$ such that $(U_0, V_0, \ldots U_n, V_n)\in T$ for any $n\in \bN$.
    \end{definition}


    \begin{definition}
        A \emph{strategy} for $II$ in $G^{\star\star}(A)$ is a subtree $\sigma\subseteq T$ such that
        \begin{enumerate}[label=(\roman*)]
            \item $\sigma$ is nonempty,
            \item if $(U_0, V_0, \ldots, V_n)\in\sigma$, then for all open nonempty $U_{n+1}\subseteq V_n$, $(U_0, V_0, \ldots, V_n, U_{n+1})\in\sigma$,
            \item if $(U_0, V_0, \ldots, U_{n})\in\sigma$, then for unique $V_n$, $(U_0, V_0, \ldots,  U_{n}, V_n)\in\sigma$. 
        \end{enumerate}
    \end{definition}

    Intuitively, the strategy $\sigma$ works as follows: $I$ starts playing $U_0$ as any open subset of $X$, then $II$ plays unique (by (iii)) $V_0$ such that $(U_0, V_0)\in\sigma$. Then $I$ responds by playing any $U_1\subseteq V_0$ and $II$ plays uniqe $V_1$ such that $(U_0, V_0, U_1, V_1)\in\sigma$, etc.

    \subsection{Fraïssé classes}
    \begin{fact}[Fraïssé theorem]
        \label{fact:fraisse_thm}
        % Suppose $\cC$ is a class of finitely generated $L$-structures such that...

        Then there exists a unique up to isomorphism counable $L$-structure $M$ such that...
    \end{fact}


    \begin{definition}
        For $\cC$, $M$ as in Fact~\ref{fact:fraisse_thm}, we write $\Flim(\cC)\coloneqq M$.
    \end{definition}

    \begin{fact}
        If $\cC$ is a uniformly locally finite Fraïssé class, then $\Flim(\cC)$ is $\aleph_0$-categorical and has quantifier elimination.
    \end{fact}

    \section{Conjugacy classes in automorphism groups}

    \subsection{Prototype: pure set}
    In this section, $M=(M,=)$ is an infinite countable set (with no structure beyond equality).
    \begin{proposition}
        If $f_1,f_2\in \Aut(M)$, then $f_1$ and $f_2$ are conjugate if and only if for each $n\in \bN\cup \{\aleph_0\}$, $f_1$ and $f_2$ have the same number of orbits of size $n$.
    \end{proposition}

    \begin{proposition}
        The conjugacy class of $f\in \Aut(M)$ is dense if and only if...
    \end{proposition}
    \begin{proposition}
        If $f\in \Aut(M)$ has an infinite orbit, then the conjugacy class of $f$ is meagre.
    \end{proposition}

    \begin{proposition}
        An automorphism $f$ of $M$ is generic if and only if...
    \end{proposition}

    \begin{proof}

    \end{proof}

    \subsection{More general structures}


    \begin{proposition}
        Suppose $M$ is an arbitrary structure and $f_1,f_2\in \Aut(M)$. Then $f_1$ and $f_2$ are conjugate if and only if $(M,f_1)\cong (M,f_2)$.
    \end{proposition}

    \begin{definition}
        We say that a Fraïssé class $\cC$ has \emph{weak Hrushovski property} (\emph{WHP}) if for every $A\in \cC$ and partial automorphism $p\colon A\to A$, there is some $B\in \cC$ such that $p$ can be extended to an automorphism of $B$, i.e.\ there is an embedding $i\colon A\to B$ and a $\bar p\in \Aut(B)$ such that the following diagram commutes:
        \begin{center}
            \begin{tikzcd}
                B\ar[r,"\bar p"]&B\\
                A\ar[u,"i"]\ar[r,"p"]&A\ar[u,"i"]
            \end{tikzcd}
        \end{center}
    \end{definition}

    \begin{proposition}
        Suppose $\cC$ is a Fraïssé class in a relational language with WHP. Then generically, for an $f\in \Aut(\Flim(\cC))$, all orbits of $f$ are finite.
    \end{proposition}
    \begin{proposition}
        Suppose $\cC$ is a Fraïssé class in an arbitrary countable language with WHP. Then generically, for an $f\in \Aut(\Flim(\cC))$ ...
    \end{proposition}

    \subsection{Random graph}
    \begin{definition}
        The \emph{random graph} is...
    \end{definition}

    \begin{fact}
        The
    \end{fact}

    \begin{proposition}
        Generically, the set of fixed points of $f\in \Aut(M)$ is isomorphic to $M$ (as a graph).
    \end{proposition}

\end{document}