1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
\documentclass[11pt, a4paper, final]{amsart}
\setlength{\emergencystretch}{2em}
\usepackage[T1]{fontenc}
\usepackage{mathtools}
\usepackage[activate={true,nocompatibility},final,tracking=true,kerning=true,spacing=true,stretch=10,shrink=10]{microtype}
\microtypecontext{spacing=nonfrench}
% \usepackage[utf8]{inputenc}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{XCharter}
\usepackage[charter,expert, greekuppercase=italicized, greekfamily=didot]{mathdesign}
\usepackage{mathtools}
\usepackage{enumitem}
\usepackage[utf8]{inputenc}
\usepackage{tikz-cd}
\usepackage{tikz}
\usepackage{etoolbox}
\usepackage{xcolor}
\definecolor{green}{RGB}{0,127,0}
\definecolor{redd}{RGB}{191,0,0}
\definecolor{red}{RGB}{105,89,205}
\usepackage[colorlinks=true]{hyperref}
\usepackage[notref, notcite]{showkeys}
\usepackage[cmtip,arrow]{xy}
%\usepackage[backend=biber,
%url=false,
%isbn=false,
%backref=true,
%citestyle=alphabetic,
%bibstyle=alphabetic,
%autocite=inline,
%maxnames=99,
%minalphanames=4,
%maxalphanames=4,
%sorting=nyt,]{biblatex}
%\addbibresource{linear_strucures.bib}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\Stab}{Stab}
\DeclareMathOperator{\st}{st}
\DeclareMathOperator{\Flim}{FLim}
\DeclareMathOperator{\Int}{{Int}}
\newcommand{\cupdot}{\mathbin{\mathaccent\cdot\cup}}
\newcommand{\cC}{\mathcal C}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\bN}{\mathbb N}
\newcommand{\bR}{\mathbb R}
\newcommand{\bZ}{\mathbb Z}
\newcommand{\bQ}{\mathbb Q}
\DeclareMathOperator{\im}{{Im}}
\DeclareMathOperator{\lin}{{Lin}}
\DeclareMathOperator{\Th}{{Th}}
\newtheorem{theorem}{Theorem}
\numberwithin{theorem}{section}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{fact}[theorem]{Fact}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{question}[theorem]{Question}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem*{theorem2}{Theorem}
\newtheorem*{claim2}{Claim}
\newtheorem*{corollary2}{Corollary}
\newtheorem*{question2}{Question}
\newtheorem*{conjecture2}{Conjecture}
\newtheorem{clm}{Claim}
\newtheorem*{clm*}{Claim}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem*{definition2}{Definition}
\newtheorem{example}[theorem]{Example}
\theoremstyle{remark}
\newtheorem{remark}[theorem]{Remark}
\newtheorem*{remark2}{Remark}
\AtEndEnvironment{proof}{\setcounter{clm}{0}}
\newenvironment{clmproof}[1][\proofname]{\proof[#1]\renewcommand{\qedsymbol}{$\square$(claim)}}{\endproof}
\newcommand{\xqed}[1]{%
\leavevmode\unskip\penalty9999 \hbox{}\nobreak\hfill
\quad\hbox{\ensuremath{#1}}}
\title{Tytuł}
\author{Franciszek Malinka}
\begin{document}
\begin{abstract}
Abstract
\end{abstract}
\section{Introduction}
\section{Preliminaries}
\subsection{Descriptive set theory}
\begin{definition}
Suppose $X$ is a topological space and $A\subseteq X$. We say that $A$ is \emph{meagre} in $X$ if $A = \bigcup_{n\in\bN}A_n$, where $A_n$ are nowhere dense subsets of $X$ (i.e. $\Int(\bar{A_n}) = \emptyset$).
\end{definition}
\begin{definition}
We say that $A$ is \emph{comeagre} in $X$ if it is a complement of a meagre set. Equivalently, a set is comeagre iff it contains a countable intersection of open dense sets.
\end{definition}
% \begin{example}
Every countable set is nowhere dense in any $T_1$ space, so, for example, $\bQ$ is meagre in $\bR$ (though being dense), which means that the set of irrationals is comeagre. Another example is...
% \end{example}
\begin{definition}
We say that a topological space $X$ is a \emph{Baire space} if every comeagre subset of $X$ is dense in $X$ (equivalently, every meagre set has empty interior).
\end{definition}
\begin{definition}
Suppose $X$ is a Baire space. We say that a property $P$ \emph{holds generically} for a point in $x\in X$ if $\{x\in X\mid P\textrm{ holds for }x\}$ is comeagre in $X$.
\end{definition}
\begin{definition}
Let $X$ be a nonempty topological space and let $A\subseteq X$. The \emph{Banach-Mazur game of $A$}, denoted as $G^{\star\star}(A)$ is defined as follows: Players $I$ and $II$ take turns in playing nonempty open sets $U_0, V_0, U_1, V_1,\ldots$ such that $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq\ldots$. We say that player $II$ wins the game if $\bigcap_{n}V_n \subseteq A$.
\end{definition}
There is an important theorem on the Banach-Mazur game: $A$ is comeagre
iff $II$ can always choose sets $V_0, V_1, \ldots$ such that it wins. Before we prove it we need to define notions necessary to formalise and prove the theorem.
\begin{definition}
$T$ is \emph{the tree of all legal positions} in the Banach-Mazur game $G^{\star\star}(A)$ when $T$ consists of all finite sequences $(W_0, W_1,\ldots, W_n)$, where $W_i$ are nonempty open sets such that $W_0\supseteq W_1\supseteq\ldots\supseteq W_n$. In another words, $T$ is a pruned tree on $\{W\subseteq X\mid W \textrm{is open nonempty}\}$.
By $[T]$ we denote the set of all "infinite branches" of $T$, i.e. infinite sequences $(U_0, V_0, \ldots)$ such that $(U_0, V_0, \ldots U_n, V_n)\in T$ for any $n\in \bN$.
\end{definition}
\begin{definition}
A \emph{strategy} for $II$ in $G^{\star\star}(A)$ is a subtree $\sigma\subseteq T$ such that
\begin{enumerate}[label=(\roman*)]
\item $\sigma$ is nonempty,
\item if $(U_0, V_0, \ldots, V_n)\in\sigma$, then for all open nonempty $U_{n+1}\subseteq V_n$, $(U_0, V_0, \ldots, V_n, U_{n+1})\in\sigma$,
\item if $(U_0, V_0, \ldots, U_{n})\in\sigma$, then for unique $V_n$, $(U_0, V_0, \ldots, U_{n}, V_n)\in\sigma$.
\end{enumerate}
\end{definition}
Intuitively, a strategy $\sigma$ works as follows: $I$ starts playing $U_0$ as any open subset of $X$, then $II$ plays unique (by (iii)) $V_0$ such that $(U_0, V_0)\in\sigma$. Then $I$ responds by playing any $U_1\subseteq V_0$ and $II$ plays uniqe $V_1$ such that $(U_0, V_0, U_1, V_1)\in\sigma$, etc.
\begin{definition}
A strategy $\sigma$ is a \emph{winning strategy for $II$} if for any game $(U_0, V_0\ldots)\in [\sigma]$ (where $[\sigma]$ is defined analogically to $[T]$) player $II$ wins, i.e. $\bigcap_{n}V_n \subseteq A$.
\end{definition}
Now we can state the key theorem.
\begin{theorem}
\label{theorem:banach_mazur_thm}
Let $X$ be a nonempty topological space and let $A\subseteq X$. Then A is comeagre $\Leftrightarrow$ $II$ has a winning strategy in $G^{\star\star}(A)$.
\end{theorem}
In order to prove it we add an auxilary definition and lemma.
\begin{definition}
Let $S$ be a pruned subtree of a strategy $\sigma$ and let $p=(U_0, V_0,\ldots, V_n)\in S$. We say that S is \emph{comprehensive for p} if the family $\cV_p = \{V_{n+1}\mid (U_0, V_0,\ldots, V_n, U_{n+1}, V_{n+1})\in S\}$ (it may be that $n=-1$) is pairwise disjoint and $\bigcup\cV_p$ is dense in $V_n$.
We say that $S$ is \emph{comprehensive} if it is comprehensive for any $p=(U_0, V_0,\ldots, V_n)\in S$.
\end{definition}
\begin{lemma}
\label{lemma:comprehensive_lemma}
Let $S$ be a comprehensive pruned subtree of a strategy $\sigma$. Then:
\begin{enumerate}[label=(\roman*)]
\item For any $V_n$ such that there is $p=(U_0, V_0, \ldots, V_n)\in S$, this $p$ is unique.
\item Let $W_n = \{V_n\mid (U_0, V_0, \ldots, V_n)\in S\}$, i.e. $W_n$ is a family of all possible choices player $II$ can make in its $n$-th move. Then $\bigcup W_n$ is open and dense in $X$.
\item There exists such comprehensive $S\subseteq \sigma$.
\end{enumerate}
\end{lemma}
\begin{proof}
(i): Suppose that there are some $p = (U_0, V_0,\ldots, U_n, V_n)$, $p'=(U'_0, V'_0, \ldots, U'_n, V'_n)$ such that $V_n = V'_n$ and $p \neq p'$. Let $k$ be the smallest index such that those sequences differ. We have two possibilities:
\begin{itemize}
\item $U_k = U'_k$ and $V_k\neq V'_k$ -- this cannot be true simply by the fact that $S$ is a subset of a strategy.
\item $U_k\neq U'_k$: by the comprehensiveness of $S$ we know that for $q =(U_0, V_0, \ldots, U_{k-1}, V_{k-1})$ the set $\cV_q$ is pairwise disjoint. Thus $V_k\cap V'_k=\emptyset$, because $V_k, V'_k\in \cV_q$. But this leads to a contradiction -- $V_n$ cannot be a nonempty subset of both $V_k, V'_k$.
\end{itemize}
(ii): The lemma is proved by induction on $n$. For $n=0$ it follows trivially from the definition of comprehensiveness. Now suppose the lemma is true for $n$. Then the set $\bigcup_{V_n\in W_n}\bigcup\cV_{p_{V_n}}$ ($p_{V_n}$ is given uniquely from (i)) is dense and open in $X$ by the induction hypothesis. But $\bigcup W_{n+1}$ is its superset, thus $\bigcup W_{n+1}$ is dense and open in $X$.
(iii): We construct $S$ recursively as follows:
\begin{enumerate}
\item $\emptyset\in S$,
\item if $(U_0, V_0, \ldots, U_n)\in S$, then $(U_0, V_0, \ldots, U_n, V_n)\in S$ for the unique $V_n$ given by the strategy $\sigma$,
\item let $p = (U_0, V_0, \ldots, V_n)\in S$, let $U^\star_{n+1}$ be the unique set player $II$ whould play by $\sigma$ given that player $I$ played $U_{n+1}\subseteq V_n$. Now, by Zorn's Lemma, let $\cU_p$ be a maximal collection of nonempty open subsets $U_{n+1}\subseteq V_n$ such that the set $\{U^\star_{n+1}\mid U_{n+1}\in\cU_p\}$ is pairwise disjoint. Then put in $S$ all $(U_0, V_0, \ldots, V_{n}, U_{n+1}, U^\star_{n+1})$ such that $U_{n+1} \in \cU_p$. This way $S$ is comprehensive for $p$: the family $\cV_p = \{V_{n+1}\mid (U_0, V_0,\ldots, V_n, U_{n+1}, V_{n+1})\ S\}$ is exactly $\{U^\star_{n+1}\mid U_{n+1}\in\cU_p\}$, which is pairwise disjoint and $\bigcup\cV_p$ is obviously dense in $V_n$ by it's maximality -- if there was any open set $\tilde{U}_{n+1}\subseteq V_n$ disjoint from $\bigcup\cU_p$, then the family $\cU_p\cup\{\tilde{U}_{n+1}\}$ violates the maximality of $\cU_p$.
\end{enumerate}
\end{proof}
Now we can move to the proof of the Banach-Mazur theorem.
\begin{proof}
$\Rightarrow$: Let $(A_n)$ be a sequence of dense open sets with $\bigcap_n A_n\subseteq A$. The simply $II$ plays $V_n = U_n\cap A_n$, which is nonempty by the denseness of $A_n$.
$\Leftarrow$: Suppose $II$ has a winning strategy $\sigma$. We will show that $A$ is comeagre. Suppose we have a comprehensive $S\subseteq \sigma$. We claim that $\mathcal{W} = \bigcap_n\bigcup W_n \subseteq A$. By \ref{lemma:comprehensive_lemma}, (ii) sets $\bigcup W_n$ are open and dense, thus $A$ must be comeagre. Now we prove the claim.
(A.a.) Suppose there is $x\in \mathcal{W}$ that is not in $A$. We will prove by induction that for any $n$ there is exactly one $V_n\in W_n$ such that $x\in V_n$. For $n = 0$ this follows trivially by the comprehensiveness of $S$. Now suppose that there is exactly one $V_n\in W_n$ such that $x\in V_n$. By our assumption there is a $V'_{n+1}\in W_{n+1}$ such that $x\in V'_{n+1}$. By \ref{lemma:comprehensive_lemma} we have unique $p_{V'_{n+1}}=(U'_0, V'_0, \ldots, V'_{n+1})\in S$. It must be that $x\in V'_n$, so by the induction hypothesis $V'_n = V_n$, thus $V'_{n+1}\in \cV_{p_{V_{n}}}$. But the family $\cV_{p_{V_{n}}}$ is disjoint, hence $V_{n+1} = V'_{n+1}$ is unique.
Now the game $(U_0, V_0, U_1, V_1,\ldots) = \bigcup_n p_{V_n}\in [S]\subseteq [\sigma]$ where $x\in V_0, V_1,\ldots$ is not winning for player $II$, which contradicts the assumption that $\sigma$ is a winning strategy.
\end{proof}
Pytania:
\begin{itemize}
\item Czy da się coś zrobić, żeby $\mathcal{V}$ nie było takie brzydkie?
\item Jak to napisać, że się zrzyna z książki?
\item Dodatkowy przykład pod def 2.2
\item $G^{\star\star}(A)$ czy $G^{**}(A)$? Czy może $G^{**}(X, A)?$ Jakiś skrót na to?
\item w \ref{lemma:comprehensive_lemma} (i), jak to ładniej sformułować?
\item w \ref{lemma:comprehensive_lemma} (iii), może to wyodrębnić? Może to dać jako pierwsze, a pierwsze dwa później?
\item dodać tytuł do \ref{theorem:banach_mazur_thm}
\item czy w dowodzie twierdzenia napisać jeszcze raz co to jest $W_n$?
\end{itemize}
\subsection{Fraïssé classes}
\begin{fact}[Fraïssé theorem]
\label{fact:fraisse_thm}
% Suppose $\cC$ is a class of finitely generated $L$-structures such that...
Then there exists a unique up to isomorphism counable $L$-structure $M$ such that...
\end{fact}
\begin{definition}
For $\cC$, $M$ as in Fact~\ref{fact:fraisse_thm}, we write $\Flim(\cC)\coloneqq M$.
\end{definition}
\begin{fact}
If $\cC$ is a uniformly locally finite Fraïssé class, then $\Flim(\cC)$ is $\aleph_0$-categorical and has quantifier elimination.
\end{fact}
\section{Conjugacy classes in automorphism groups}
\subsection{Prototype: pure set}
In this section, $M=(M,=)$ is an infinite countable set (with no structure beyond equality).
\begin{proposition}
If $f_1,f_2\in \Aut(M)$, then $f_1$ and $f_2$ are conjugate if and only if for each $n\in \bN\cup \{\aleph_0\}$, $f_1$ and $f_2$ have the same number of orbits of size $n$.
\end{proposition}
\begin{proposition}
The conjugacy class of $f\in \Aut(M)$ is dense if and only if...
\end{proposition}
\begin{proposition}
If $f\in \Aut(M)$ has an infinite orbit, then the conjugacy class of $f$ is meagre.
\end{proposition}
\begin{proposition}
An automorphism $f$ of $M$ is generic if and only if...
\end{proposition}
\begin{proof}
\end{proof}
\subsection{More general structures}
\begin{proposition}
Suppose $M$ is an arbitrary structure and $f_1,f_2\in \Aut(M)$. Then $f_1$ and $f_2$ are conjugate if and only if $(M,f_1)\cong (M,f_2)$.
\end{proposition}
\begin{definition}
We say that a Fraïssé class $\cC$ has \emph{weak Hrushovski property} (\emph{WHP}) if for every $A\in \cC$ and partial automorphism $p\colon A\to A$, there is some $B\in \cC$ such that $p$ can be extended to an automorphism of $B$, i.e.\ there is an embedding $i\colon A\to B$ and a $\bar p\in \Aut(B)$ such that the following diagram commutes:
\begin{center}
\begin{tikzcd}
B\ar[r,"\bar p"]&B\\
A\ar[u,"i"]\ar[r,"p"]&A\ar[u,"i"]
\end{tikzcd}
\end{center}
\end{definition}
\begin{proposition}
Suppose $\cC$ is a Fraïssé class in a relational language with WHP. Then generically, for an $f\in \Aut(\Flim(\cC))$, all orbits of $f$ are finite.
\end{proposition}
\begin{proposition}
Suppose $\cC$ is a Fraïssé class in an arbitrary countable language with WHP. Then generically, for an $f\in \Aut(\Flim(\cC))$ ...
\end{proposition}
\subsection{Random graph}
\begin{definition}
The \emph{random graph} is...
\end{definition}
\begin{fact}
The
\end{fact}
\begin{proposition}
Generically, the set of fixed points of $f\in \Aut(M)$ is isomorphic to $M$ (as a graph).
\end{proposition}
\end{document}
|