\documentclass[11pt, a4paper, final]{amsart} \setlength{\emergencystretch}{2em} \usepackage[T1]{fontenc} \usepackage{mathtools} \usepackage[activate={true,nocompatibility},final,tracking=true,kerning=true,spacing=true,stretch=10,shrink=10]{microtype} \microtypecontext{spacing=nonfrench} \usepackage[utf8]{inputenc} \usepackage{amsfonts} \usepackage{amsmath} \usepackage{amssymb} \usepackage{amsthm} \usepackage{XCharter} \usepackage[charter,expert, greekuppercase=italicized, greekfamily=didot]{mathdesign} \usepackage{mathtools} \usepackage{enumitem} \usepackage[utf8]{inputenc} \usepackage{tikz-cd} \usepackage{tikz} \usepackage{etoolbox} \usepackage{xcolor} \definecolor{green}{RGB}{0,127,0} \definecolor{redd}{RGB}{191,0,0} \definecolor{red}{RGB}{105,89,205} \usepackage[colorlinks=true]{hyperref} \usepackage[notref, notcite]{showkeys} \usepackage[cmtip,arrow]{xy} %\usepackage[backend=biber, %url=false, %isbn=false, %backref=true, %citestyle=alphabetic, %bibstyle=alphabetic, %autocite=inline, %maxnames=99, %minalphanames=4, %maxalphanames=4, %sorting=nyt,]{biblatex} %\addbibresource{linear_strucures.bib} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\Stab}{Stab} \DeclareMathOperator{\st}{st} \DeclareMathOperator{\Flim}{FLim} \newcommand{\cupdot}{\mathbin{\mathaccent\cdot\cup}} \newcommand{\cC}{\mathcal C} \newcommand{\bN}{\mathbf N} \newcommand{\bR}{\mathbf R} \newcommand{\bZ}{\mathbf Z} \DeclareMathOperator{\im}{{Im}} \DeclareMathOperator{\lin}{{Lin}} \DeclareMathOperator{\Th}{{Th}} \newtheorem{theorem}{Theorem} \numberwithin{theorem}{section} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{claim}[theorem]{Claim} \newtheorem{fact}[theorem]{Fact} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{question}[theorem]{Question} \newtheorem{corollary}[theorem]{Corollary} \newtheorem*{theorem2}{Theorem} \newtheorem*{claim2}{Claim} \newtheorem*{corollary2}{Corollary} \newtheorem*{question2}{Question} \newtheorem*{conjecture2}{Conjecture} \newtheorem{clm}{Claim} \newtheorem*{clm*}{Claim} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem*{definition2}{Definition} \newtheorem{example}[theorem]{Example} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \newtheorem*{remark2}{Remark} \AtEndEnvironment{proof}{\setcounter{clm}{0}} \newenvironment{clmproof}[1][\proofname]{\proof[#1]\renewcommand{\qedsymbol}{$\square$(claim)}}{\endproof} \newcommand{\xqed}[1]{% \leavevmode\unskip\penalty9999 \hbox{}\nobreak\hfill \quad\hbox{\ensuremath{#1}}} \title{Tytuł} \author{Franciszek Malinka} \begin{document} \begin{abstract} Abstract \end{abstract} \section{Introduction} \section{Preliminaries} \subsection{Descriptive set theory} \begin{definition} Suppose $X$ is a topological space and $A\subseteq X$. We say that $A$ is \emph{meagre} in $X$ if... Wea say that $A$ is \emph{comeagre} in $X$ if... . \end{definition} \begin{definition} We say that a topological space $X$ is a \emph{Baire space} if every comeagre subset of $X$ is dense in $X$ (equivalently, every meagre set has empty interior). \end{definition} \begin{definition} Suppose $X$ is a Baire space. We say that a property $P$ holds generically for a point in $x\in X$ if $\{x\in X\mid P\textrm{ holds for }x\}$ is comeagre in $X$. \end{definition} \begin{example} content \end{example} \subsection{Fraïssé classes} \begin{fact}[Fraïssé theorem] \label{fact:fraisse_thm} Suppose $\cC$ is a class of finitely generated $L$-structures such that... Then there exists a unique up to isomorphism counable $L$-structure $M$ such that... \end{fact} \begin{definition} For $\cC$, $M$ as in Fact~\ref{fact:fraisse_thm}, we write $\Flim(\cC)\coloneqq M$. \end{definition} \begin{fact} If $\cC$ is a uniformly locally finite Fraïssé class, then $\Flim(\cC)$ is $\aleph_0$-categorical and has quantifier elimination. \end{fact} \section{Conjugacy classes in automorphism groups} \subsection{Prototype: pure set} In this section, $M=(M,=)$ is an infinite countable set (with no structure beyond equality). \begin{proposition} If $f_1,f_2\in \Aut(M)$, then $f_1$ and $f_2$ are conjugate if and only if for each $n\in \bN\cup \{\aleph_0\}$, $f_1$ and $f_2$ have the same number of orbits of size $n$. \end{proposition} \begin{proposition} The conjugacy class of $f\in \Aut(M)$ is dense if and only if... \end{proposition} \begin{proposition} If $f\in \Aut(M)$ has an infinite orbit, then the conjugacy class of $f$ is meagre. \end{proposition} \begin{proposition} An automorphism $f$ of $M$ is generic if and only if... \end{proposition} \begin{proof} \end{proof} \subsection{More general structures} \begin{proposition} Suppose $M$ is an arbitrary structure and $f_1,f_2\in \Aut(M)$. Then $f_1$ and $f_2$ are conjugate if and only if $(M,f_1)\cong (M,f_2)$. \end{proposition} \begin{definition} We say that a Fraïssé class $\cC$ has \emph{weak Hrushovski property} (\emph{WHP}) if for every $A\in \cC$ and partial automorphism $p\colon A\to A$, there is some $B\in \cC$ such that $p$ can be extended to an automorphism of $B$, i.e.\ there is an embedding $i\colon A\to B$ and a $\bar p\in \Aut(B)$ such that the following diagram commutes: \begin{center} \begin{tikzcd} B\ar[r,"\bar p"]&B\\ A\ar[u,"i"]\ar[r,"p"]&A\ar[u,"i"] \end{tikzcd} \end{center} \end{definition} \begin{proposition} Suppose $\cC$ is a Fraïssé class in a relational language with WHP. Then generically, for an $f\in \Aut(\Flim(\cC))$, all orbits of $f$ are finite. \end{proposition} \begin{proposition} Suppose $\cC$ is a Fraïssé class in an arbitrary countable language with WHP. Then generically, for an $f\in \Aut(\Flim(\cC))$ ... \end{proposition} \subsection{Random graph} \begin{definition} The \emph{random graph} is... \end{definition} \begin{fact} The \end{fact} \begin{proposition} Generically, the set of fixed points of $f\in \Aut(M)$ is isomorphic to $M$ (as a graph). \end{proposition} \end{document}