
1. Introduction

2. Preliminaries

2.1. Descriptive set theory.

Definition 2.1. Suppose X is a topological space and A ⊆ X . We say that A
is meagre in X if A=

⋃

n∈N An, where An are nowhere dense subsets of X (i.e.
Int(Ān) = ;).

Definition 2.2. We say thatA is comeagre in X if it is a complement of ameagre
set. Equivalently, a set is comeagre iff it contains a countable intersection of
open dense sets.

Every countable set is meagre in any T1 space, so, for example, Q is meagre
inR (though being dense), whichmeans that the set of irrationals is comeagre.
Another example is...

Definition 2.3. We say that a topological space X is a Baire space if every
comeagre subset of X is dense in X (equivalently, every meagre set has empty
interior).

Definition 2.4. Suppose X is a Baire space. We say that a property P holds
generically for a point in x ∈ X if {x ∈ X | P holds for x} is comeagre in X .

Definition 2.5. Let X be a nonempty topological space and let A ⊆ X . The
Banach-Mazur game of A, denoted as G⋆⋆(A) is defined as follows: Players I
and II take turns in playing nonempty open sets U0, V0, U1, V1, . . . such that
U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ . . .. We say that player II wins the game if

⋂

n Vn ⊆ A.

There is an important theorem on the Banach-Mazur game: A is comeagre
iff II can always choose sets V0, V1, . . . such that it wins. Before we prove it we
need to define notions necessary to formalise and prove the theorem.

Definition 2.6. T is the tree of all legal positions in the Banach-Mazur game
G⋆⋆(A) when T consists of all finite sequences (W0, W1, . . . , Wn), where Wi are
nonempty open sets such that W0 ⊇W1 ⊇ . . . ⊇Wn. In another words, T is a
pruned tree on {W ⊆ X |W is open nonempty}.

Definition 2.7. We say that σ is a pruned subtree of the tree of all legal
positions T if σ ⊆ T and for any (W0, W1, . . . , Wn) ∈ σ, n≥ 0 there is a W such
that (W0, W1, . . . , Wn, W ) ∈ σ (it simply means that there’s no finite branch
in σ).

Definition 2.8. Let σ be a pruned subtree of the tree of all legal positions T .
By [σ] we denote the set of all infinite branches of σ, i.e. infinite sequences
(W0, W1, . . .) such that (W0, W1, . . . Wn) ∈ σ for any n ∈ N.

Definition 2.9. A strategy for II in G⋆⋆(A) is a pruned subtree σ ⊆ T such that
(i) σ is nonempty,
(ii) if (U0, V0, . . . , Un, Vn) ∈ σ, then for all open nonempty Un+1 ⊆ Vn,
(U0, V0, . . . , Un, Vn, Un+1) ∈ σ,

(iii) if (U0, V0, . . . , Un) ∈ σ, then for a unique Vn, (U0, V0, . . . , Un, Vn) ∈ σ.
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Intuitively, a strategy σ works as follows: I starts playing U0 as any open
subset of X , then II plays unique (by (iii)) V0 such that (U0, V0) ∈ σ. Then I re-
sponds by playing any U1 ⊆ V0 and II plays uniqe V1 such that (U0, V0, U1, V1) ∈
σ, etc.

Definition 2.10. A strategy σ is a winning strategy for II if for any game
(U0, V0 . . .) ∈ [σ] player II wins, i.e.

⋂

n Vn ⊆ A.

Now we can state the key theorem.

Theorem 2.11 (Banach-Mazur, Oxtoby). Let X be a nonempty topological
space and let A⊆ X . Then A is comeagre⇔ II has a winning strategy in G⋆⋆(A).

In order to prove it we add an auxilary definition and lemma.

Definition 2.12. Let S ⊆ σ be a pruned subtree of tree of all legal positions
T and let p = (U0, V0, . . . , Vn) ∈ S. We say that S is comprehensive for p if the
family Vp = {Vn+1 | (U0, V0, . . . , Vn, Un+1, Vn+1) ∈ S} (it may be that n = −1,
which means p = ;) is pairwise disjoint and

⋃

Vp is dense in Vn (where we
think that V−1 = X ).

We say that S is comprehensive if it is comprehensive for each p =
(U0, V0, . . . , Vn) ∈ S.

Fact 2.13. If σ is a winnig strategy for II then there exists a nonempty compre-
hensive S ⊆ σ.

Proof. We construct S recursively as follows:
(1) ; ∈ S,
(2) if (U0, V0, . . . , Un) ∈ S, then (U0, V0, . . . , Un, Vn) ∈ S for the unique Vn

given by the strategy σ,
(3) let p = (U0, V0, . . . , Vn) ∈ S. For a possible player I ’s move Un+1 ⊆ Vn

let U⋆n+1 be the unique set player II would respond with by σ. Now,
by Zorn’s Lemma, let Up be a maximal collection of nonempty open
subsets Un+1 ⊆ Vn such that the set {U⋆n+1 | Un+1 ∈ Up} is pairwise
disjoint. Then put in S all (U0, V0, . . . , Vn, Un+1) such that Un+1 ∈
Up. This way S is comprehensive for p: the family Vp = {Vn+1 |
(U0, V0, . . . , Vn, Un+1, Vn+1) ∈ S} is exactly {U⋆n+1 | Un+1 ∈ Up}, which is
pairwise disjoint and

⋃

Vp is obviously dense in Vn by the maximal-
ity of Up – if there was any open set Ũn+1 ⊆ Vn disjoint from

⋃

Vp,
then Ũ⋆n+1 ⊆ Ũn+1 would be also disjoint from

⋃

Vp, so the family
Up ∪ {Ũn+1} would violate the maximality of Up . □

Lemma 2.14. Let S be a nonempty comprehensive pruned subtree of a strategy
σ. Then:

(i) For any open Vn ⊆ X there is at most one p = (U0, V0, . . . , Un, Vn) ∈ S.
(ii) Let Sn = {Vn | (U0, V0, . . . , Vn) ∈ S} for n ∈ N (i.e. Sn is a family of

all possible choices player II can make in its n-th move according to S).
Then
⋃

Sn is open and dense in X .
(iii) Sn is a family of pairwise disjoint sets.

Proof. (i): Suppose that there are some p = (U0, V0, . . . , Un, Vn), p′ =
(U ′0, V ′0 , . . . , U ′n, V ′n) such that Vn = V ′n and p ̸= p′. Let k be the smallest index
such that those sequences differ. We have two possibilities:
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• Uk = U ′k and Vk ̸= V ′k – this cannot be true simply by the fact that S is
a subset of a strategy (so Vk is unique for Uk).
• Uk ̸= U ′k: by the comprehensiveness of S we know that for q =
(U0, V0, . . . , Uk−1, Vk−1) the set Vq is pairwise disjoint. Thus Vk∩V ′k = ;,
because Vk, V ′k ∈ Vq. But this leads to a contradiction – Vn cannot be
a nonempty subset of both Vk, V ′k .

(ii): The lemma is proved by induction on n. For n = 0 it follows trivially
from the definition of comprehensiveness. Now suppose the lemma is true
for n. Then the set

⋃

Vn∈Sn

⋃

VpVn
(where pVn

is given uniquely from (i)) is
dense and open in X by the induction hypothesis. But

⋃

Sn+1 is exactly this
set, thus it is dense and open in X .

(iii): We will prove it by induction on n. Once again, the case n = 0
follows from the comprehensiveness of S. Now suppose that the sets in Sn
are pairwise disjoint. Take some x ∈ Vn+1 ∈ Sn+1. Of course

⋃

Sn ⊇
⋃

Sn+1,
thus by the inductive hypothesis x ∈ Vn for the unique Vn ∈ Sn. It must be that
Vn+1 ∈ VpVn

, because Vn is the only superset of Vn+1 in Sn. But VpVn
is disjoint,

so there is no other V ′n+1 ∈ VpVn
suc h that x ∈ V ′n+1. Moreover, there is no

such set in Sn+1 \ VpVn
, because those sets are disjoint from Vn. Hence there

is no V ′n+1 ∈ Sn+1 other than Vn such that x ∈ V ′n+1. We chosed x and Vn+1
arbitrarily, so Sn+1 is pairwise disjoint. □

Now we can move to the proof of the Banach-Mazur theorem.

Proof of theorem 2.11. ⇒: Let (An) be a sequence of dense open sets with
⋂

n An ⊆ A. The simply II plays Vn = Un ∩ An, which is nonempty by the
denseness of An.
⇐: Suppose II has a winning strategy σ. We will show that A is comeagre.

Take a comprehensive S ⊆ σ. We claim that S =
⋂

n

⋃

Sn ⊆ A. By the
lemma 2.14, (ii) sets

⋃

Sn are open and dense, thus A must be comeagre.
Now we prove the claim towards contradiction.

Suppose there is x ∈ S \ A. By the lemma 2.14, (iii) for any n there
is unique x ∈ Vn ∈ Sn. It follows that pV0

⊂ pV1
⊂ . . .. Now the game

(U0, V0, U1, V1, . . .) =
⋃

n pVn
∈ [S] ⊆ [σ] is not winning for player II, which

contradicts the assumption that σ is a winning strategy. □

Corollary 2.15. If we add a constraint to the Banach-Mazur game such that
players can only choose basic open sets, then the theorem 2.11 still suffices.

Proof. If one adds the word basic before each occurance of word open in
previous proofs and theorems then they all will still be valid (except for ⇒,
but its an easy fix – take Vn a basic open subset of Un ∩ An). □

This corollary will be important in using the theorem in practice – it’s much
easier to work with basic open sets rather than any open sets.

2.2. Fraïssé classes.

Fact 2.16 (Fraïssé theorem). Then there exists a unique up to isomorphism
countable L-structure M such that...

Definition 2.17. For C , M as in Fact 2.16, we write FLim(C ) := M .
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Fact 2.18. If C is a uniformly locally finite Fraïssé class, then FLim(C ) is ℵ0-
categorical and has quantifier elimination.

3. Conjugacy classes in automorphism groups

3.1. Prototype: pure set. In this section, M = (M ,=) is an infinite countable
set (with no structure beyond equality).

Proposition 3.1. If f1, f2 ∈ Aut(M), then f1 and f2 are conjugate if and only if
for each n ∈ N∪ {ℵ0}, f1 and f2 have the same number of orbits of size n.

Proposition 3.2. The conjugacy class of f ∈ Aut(M) is dense if and only if...

Proposition 3.3. If f ∈ Aut(M) has an infinite orbit, then the conjugacy class
of f is meagre.

Proposition 3.4. An automorphism f of M is generic if and only if...

Proof. □

3.2. More general structures.

Proposition 3.5. Suppose M is an arbitrary structure and f1, f2 ∈ Aut(M).
Then f1 and f2 are conjugate if and only if (M , f1)∼= (M , f2).

Definition 3.6. We say that a Fraïssé class C has weak Hrushovski property
(WHP) if for every A∈ C and partial automorphism p : A→ A, there is some
B ∈ C such that p can be extended to an automorphism of B, i.e. there is
an embedding i : A→ B and a p̄ ∈ Aut(B) such that the following diagram
commutes:

B B

A A

p̄

i
p

i

Proposition 3.7. Suppose C is a Fraïssé class in a relational language with
WHP. Then generically, for an f ∈ Aut(FLim(C )), all orbits of f are finite.

Proposition 3.8. Suppose C is a Fraïssé class in an arbitrary countable lan-
guage with WHP. Then generically, for an f ∈ Aut(FLim(C )) ...

3.3. Random graph.

Definition 3.9. The random graph is...

Fact 3.10. The

Proposition 3.11. Generically, the set of fixed points of f ∈ Aut(M) is isomor-
phic to M (as a graph).
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