1. INTRODUCTION

2. PRELIMINARIES

2.1. **Descriptive set theory.**

Definition 2.1. Suppose *X* is a topological space and $A \subseteq X$. We say that *A* is *meagre* in *X* if $A = \bigcup_{n \in \mathbb{N}} A_n$, where A_n are nowhere dense subsets of *X* (i.e. $Int(\overline{A}_n) = \emptyset$).

Definition 2.2. We say that *A*is *comeagre* in *X* if it is a complement of a meagre set. Equivalently, a set is comeagre iff it contains a countable intersection of open dense sets.

Every countable set is meagre in any T_1 space, so, for example, $\mathbb Q$ is meagre in $\mathbb R$ (though being dense), which means that the set of irrationals is comeagre. Another example is...

Definition 2.3. We say that a topological space *X* is a *Baire space* if every comeagre subset of *X* is dense in *X* (equivalently, every meagre set has empty interior).

Definition 2.4. Suppose *X* is a Baire space. We say that a property *P holds generically* for a point in $x \in X$ if $\{x \in X \mid P \text{ holds for } x\}$ is comeagre in X.

Definition 2.5. Let *X* be a nonempty topological space and let $A \subseteq X$. The *Banach-Mazur game of A*, denoted as *G ⋆⋆*(*A*) is defined as follows: Players *^I* and *II* take turns in playing nonempty open sets U_0 , V_0 , U_1 , V_1 ,... such that *U*₀ ⊇ *V*₀ ⊇ *U*₁ ⊇ *V*₁ ⊇ We say that player *II* wins the game if $\bigcap_n V_n$ ⊆ *A*.

There is an important theorem on the Banach-Mazur game: *A* is comeagre iff *II* can always choose sets V_0, V_1, \ldots such that it wins. Before we prove it we need to define notions necessary to formalise and prove the theorem.

Definition 2.6. *T* is *the tree of all legal positions* in the Banach-Mazur game $G^{**}(A)$ when *T* consists of all finite sequences (W_0, W_1, \ldots, W_n) , where W_i are nonempty open sets such that $W_0 \supseteq W_1 \supseteq \ldots \supseteq W_n$. In another words, T is a pruned tree on $\{W \subseteq X \mid W$ is open nonempty.

Definition 2.7. We say that σ is a pruned subtree of the tree of all legal positions *T* if $\sigma \subseteq T$ and for any $(W_0, W_1, \ldots, W_n) \in \sigma, n \ge 0$ there is a *W* such that $(W_0, W_1, \ldots, W_n, W) \in \sigma$ (it simply means that there's no finite branch in σ).

Definition 2.8. Let σ be a pruned subtree of the tree of all legal positions *T*. By $[σ]$ we denote *the set of all infinite branches of* $σ$, *i.e.* infinite sequences (W_0, W_1, \ldots) such that $(W_0, W_1, \ldots, W_n) \in \sigma$ for any $n \in \mathbb{N}$.

Definition 2.9. A *strategy* for *II* in $G^{\star\star}(A)$ is a pruned subtree $\sigma \subseteq T$ such that

- (i) σ is nonempty,
- (ii) if $(U_0, V_0, \ldots, U_n, V_n) \in \sigma$, then for all open nonempty $U_{n+1} \subseteq V_n$, $(U_0, V_0, \ldots, U_n, V_n, U_{n+1}) \in \sigma$,
- (iii) if $(U_0, V_0, \ldots, U_n) \in \sigma$, then for a unique V_n , $(U_0, V_0, \ldots, U_n, V_n) \in \sigma$.

Intuitively, a strategy σ works as follows: *I* starts playing U_0 as any open subset of *X*, then *II* plays unique (by (iii)) V_0 such that $(U_0, V_0) \in \sigma$. Then *I* responds by playing any $U_1 \subseteq V_0$ and *II* plays uniqe V_1 such that $(U_0, V_0, U_1, V_1) \in$ *σ*, etc.

Definition 2.10. A strategy σ is a *winning strategy for II* if for any game $(U_0, V_0 \dots) \in [\sigma]$ player *II* wins, i.e. $\bigcap_n V_n \subseteq A$.

Now we can state the key theorem.

Theorem 2.11 (Banach-Mazur, Oxtoby)**.** *Let X be a nonempty topological* \mathbf{p}_i *space and let* $A \subseteq X$ *. Then A is comeagre* \Leftrightarrow *II has a winning strategy in* $G^{\star\star}(A)$ *.*

In order to prove it we add an auxilary definition and lemma.

Definition 2.12. Let $S \subseteq \sigma$ be a pruned subtree of tree of all legal positions *T* and let $p = (U_0, V_0, \dots, V_n) \in S$. We say that *S* is *comprehensive for p* if the $f(\text{family } \mathcal{V}_p = \{V_{n+1} \mid (U_0, V_0, \dots, V_n, U_{n+1}, V_{n+1}) \in S\}$ (it may be that $n = -1$, which means $p = \emptyset$) is pairwise disjoint and $\bigcup \mathcal{V}_p$ is dense in V_n (where we think that $V_{-1} = X$).

We say that *S* is *comprehensive* if it is comprehensive for each $p =$ $(U_0, V_0, \ldots, V_n) \in S$.

Fact 2.13. If σ is a winnig strategy for II then there exists a nonempty compre*hensive* $S \subseteq \sigma$ *.*

Proof. We construct *S* recursively as follows:

- (1) $\emptyset \in S$,
- (2) if $(U_0, V_0, \ldots, U_n) \in S$, then $(U_0, V_0, \ldots, U_n, V_n) \in S$ for the unique V_n given by the strategy *σ*,
- (3) let $p = (U_0, V_0, \ldots, V_n) \in S$. For a possible player *I*'s move $U_{n+1} \subseteq V_n$ let U_{n+1}^* be the unique set player *II* would respond with by σ . Now, by Zorn's Lemma, let \mathcal{U}_p be a maximal collection of nonempty open subsets $U_{n+1} \subseteq V_n$ such that the set $\{U_{n+1}^{\star} \mid U_{n+1} \in \mathcal{U}_p\}$ is pairwise disjoint. Then put in *S* all $(U_0, V_0, \ldots, V_n, U_{n+1})$ such that $U_{n+1} \in$ \mathcal{U}_p . This way *S* is comprehensive for *p*: the family $\mathcal{V}_p = \{V_{n+1} |$ $(U_0, V_0, \ldots, V_n, U_{n+1}, V_{n+1}) \in S$ is exactly $\{U_{n+1}^* \mid U_{n+1} \in \mathcal{U}_p\}$, which is pairwise disjoint and $\bigcup \mathcal{V}_p$ is obviously dense in V_n by the maximality of \mathcal{U}_p – if there was any open set $\tilde{U}_{n+1} \subseteq V_n$ disjoint from $\bigcup \mathcal{V}_p$, then $\tilde{U}_{n+1}^* \subseteq \tilde{U}_{n+1}$ would be also disjoint from $\bigcup \mathcal{V}_p$, so the family \mathcal{U}_p ∪ { \tilde{U}_{n+1} } would violate the maximality of \mathcal{U}_p . □

Lemma 2.14. *Let S be a nonempty comprehensive pruned subtree of a strategy σ. Then:*

- *(i) For any open* $V_n \subseteq X$ *there is at most one* $p = (U_0, V_0, \ldots, U_n, V_n) \in S$ *.*
- *(ii) Let* $S_n = \{V_n | (U_0, V_0, \ldots, V_n) \in S\}$ *for* $n \in \mathbb{N}$ *(i.e.* S_n *is a family of all possible choices player II can make in its n-th move according to S). Then* $\bigcup S_n$ *is open and dense in X.*
- *(iii) Sⁿ is a family of pairwise disjoint sets.*

Proof. (i): Suppose that there are some $p = (U_0, V_0, \ldots, U_n, V_n)$, $p' =$ (U_0^{\prime}) $\frac{1}{2}$, V'_{0} U'_{0}, \ldots, U'_{n} $\sum_{n}^{\prime} V_n^{\prime}$ V'_n) such that $V_n = V'_n$ n'_n and $p \neq p'$. Let *k* be the smallest index such that those sequences differ. We have two possibilities:

- $U_k = U'_k$ V_k and $V_k \neq V_k'$ K'_{k} – this cannot be true simply by the fact that *S* is a subset of a strategy (so V_k is unique for U_k).
- $U_k \neq U'_k$ k : by the comprehensiveness of *S* we know that for $q =$ $(U_0, V_0, \ldots, U_{k-1}, V_{k-1})$ the set \mathcal{V}_q is pairwise disjoint. Thus $V_k \cap V'_k = \emptyset$, because V_k , V'_k $K'_k \in V_q$. But this leads to a contradiction – V_n cannot be a nonempty subset of both V_k , V'_k *k* .

(ii): The lemma is proved by induction on *n*. For $n = 0$ it follows trivially from the definition of comprehensiveness. Now suppose the lemma is true for *n*. Then the set $\bigcup_{V_n \in S_n} \bigcup \mathcal{V}_{p_{V_n}}$ (where p_{V_n} is given uniquely from (i)) is dense and open in *X* by the induction hypothesis. But $\bigcup S_{n+1}$ is exactly this set, thus it is dense and open in *X*.

(iii): We will prove it by induction on *n*. Once again, the case $n = 0$ follows from the comprehensiveness of *S*. Now suppose that the sets in S_n are pairwise disjoint. Take some $x \in V_{n+1} \in S_{n+1}$. Of course $\bigcup S_n \supseteq \bigcup S_{n+1}$, thus by the inductive hypothesis $x \in V_n$ for the unique $V_n \in S_n$. It must be that $V_{n+1} \in V_{p_{V_n}}$, because V_n is the only superset of V_{n+1} in S_n . But $V_{p_{V_n}}$ is disjoint, so there is no other V'_n $\gamma'_{n+1} \in \mathcal{V}_{p_{V_n}}$ such that $x \in V'_n$ n_{n+1} . Moreover, there is no such set in $S_{n+1} \setminus V_{p_{V_n}}$, because those sets are disjoint from V_n . Hence there is no V'_n $V'_{n+1} \in S_{n+1}$ other than V_n such that $x \in V'_n$ V'_{n+1} . We chosed *x* and V_{n+1} arbitrarily, so S_{n+1} is pairwise disjoint. □

Now we can move to the proof of the Banach-Mazur theorem.

Proof of theorem [2.11.](#page-1-0) \Rightarrow : Let (A_n) be a sequence of dense open sets with $\bigcap_{n} A_n \subseteq A$. The simply *II* plays $V_n = U_n \cap A_n$, which is nonempty by the $n_A A_n \subseteq A$. The simply *II* plays $V_n = U_n \cap A_n$, which is nonempty by the denseness of A_n .

⇐: Suppose *II* has a winning strategy *σ*. We will show that *A* is comeagre. Take a comprehensive $S \subseteq \sigma$. We claim that $\mathscr{S} = \bigcap_n \bigcup S_n \subseteq A$. By the lemma [2.14,](#page-1-1) (ii) sets $\bigcup S_n$ are open and dense, thus *A* must be comeagre. Now we prove the claim towards contradiction.

Suppose there is $x \in \mathcal{S} \setminus A$. By the lemma [2.14,](#page-1-1) (iii) for any *n* there is unique $x \in V_n \in S_n$. It follows that $p_{V_0} \subset p_{V_1} \subset \dots$ Now the game $(U_0, V_0, U_1, V_1, \ldots) = \bigcup_n p_{V_n} \in [S] \subseteq [\sigma]$ is not winning for player *II*, which contradicts the assumption that σ is a winning strategy.

Corollary 2.15. *If we add a constraint to the Banach-Mazur game such that players can only choose basic open sets, then the theorem [2.11](#page-1-0) still suffices.*

Proof. If one adds the word *basic* before each occurance of word *open* in previous proofs and theorems then they all will still be valid (except for \Rightarrow , but its an easy fix – take V_n a basic open subset of $U_n \cap A_n$).). \Box

This corollary will be important in using the theorem in practice – it's much easier to work with basic open sets rather than any open sets.

2.2. **Fraïssé classes.**

Fact 2.16 (Fraïssé theorem)**.** *Then there exists a unique up to isomorphism countable L-structure M such that...*

Definition 2.17. For \mathcal{C} , *M* as in Fact [2.16,](#page-2-0) we write FLim(\mathcal{C}) := *M*.

Fact 2.18. If $\mathscr C$ is a uniformly locally finite Fraïssé class, then FLim $(\mathscr C)$ is \aleph_0 *categorical and has quantifier elimination.*

3. CONJUGACY CLASSES IN AUTOMORPHISM GROUPS

3.1. **Prototype: pure set.** In this section, $M = (M, =)$ is an infinite countable set (with no structure beyond equality).

Proposition 3.1. If $f_1, f_2 \in \text{Aut}(M)$, then f_1 and f_2 are conjugate if and only if *for each* $n \in \mathbb{N} \cup \{ \aleph_0 \}$, f_1 and f_2 have the same number of orbits of size n.

Proposition 3.2. *The conjugacy class of* $f \in Aut(M)$ *is dense if and only if...*

Proposition 3.3. *If* $f \in Aut(M)$ *has an infinite orbit, then the conjugacy class of f is meagre.*

Proposition 3.4. *An automorphism f of M is generic if and only if...*

Proof. □

3.2. **More general structures.**

Proposition 3.5. *Suppose M is an arbitrary structure and* $f_1, f_2 \in \text{Aut}(M)$ *. Then* f_1 and f_2 are conjugate if and only if $(M, f_1) \cong (M, f_2)$.

Definition 3.6. We say that a Fraïssé class $\mathscr C$ has *weak Hrushovski property* (*WHP*) if for every $A \in \mathcal{C}$ and partial automorphism $p : A \rightarrow A$, there is some *B* $\in \mathcal{C}$ such that *p* can be extended to an automorphism of *B*, i.e. there is an embedding $i: A \rightarrow B$ and a $\bar{p} \in Aut(B)$ such that the following diagram commutes: ¯*p*

$$
B \xrightarrow{p} B
$$

\n
$$
\begin{array}{c} \uparrow \\ \uparrow \\ A \xrightarrow{p} A \end{array}
$$

Proposition 3.7. *Suppose* $\mathscr C$ *is a Fraïssé class in a relational language with WHP. Then generically, for an* $f \in Aut(FLim(\mathcal{C}))$ *, all orbits of* f *are finite.*

Proposition 3.8. Suppose *C* is a Fraïssé class in an arbitrary countable lan*guage with WHP. Then generically, for an* $f \in Aut(FLim(\mathcal{C}))$...

3.3. **Random graph.**

Definition 3.9. The *random graph* is...

Fact 3.10. *The*

Proposition 3.11. *Generically, the set of fixed points of* $f \in Aut(M)$ *is isomorphic to M (as a graph).*