
1. Introduction

2. Preliminaries

2.1. Descriptive set theory.

Definition 2.1. Suppose X is a topological space and A ⊆ X . We say that A
is meagre in X if A=

⋃

n∈N An, where An are nowhere dense subsets of X (i.e.
Int(Ān) = ;).

Definition 2.2. We say thatA is comeagre in X if it is a complement of ameagre
set. Equivalently, a set is comeagre if and only if it contains a countable
intersection of open dense sets.

Every countable set is meagre in any T1 space, so, for example, Q is meagre
in R (although it is dense), whichmeans that the set of irrationals is comeagre.
Another example is...

Definition 2.3. We say that a topological space X is a Baire space if every
comeagre subset of X is dense in X (equivalently, every meagre set has empty
interior).

Definition 2.4. Suppose X is a Baire space. We say that a property P holds
generically for a point x ∈ X if {x ∈ X | P holds for x} is comeagre in X .

Definition 2.5. Let X be a nonempty topological space and let A ⊆ X . The
Banach-Mazur game of A, denoted as G⋆⋆(A) is defined as follows: Players I
and II take turns in playing nonempty open sets U0, V0, U1, V1, . . . such that
U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ . . .. We say that player II wins the game if

⋂

n Vn ⊆ A.

There is an important theorem on the Banach-Mazur game: A is comeagre
if and only if II can always choose sets V0, V1, . . . such that it wins. Before
we prove it we need to define notions necessary to formalise and prove the
theorem.

Definition 2.6. T is the tree of all legal positions in the Banach-Mazur game
G⋆⋆(A) when T consists of all finite sequences (W0, W1, . . . , Wn), where Wi are
nonempty open sets such that W0 ⊇ W1 ⊇ . . . ⊇ Wn. In other words, T is a
pruned tree on {W ⊆ X |W is open nonempty}.

Definition 2.7. We say that σ is a pruned subtree of the tree of all legal
positions T if σ ⊆ T , for any (W0, W1, . . . , Wn) ∈ σ, n≥ 0 there is a W such that
(W0, W1, . . . , Wn, W ) ∈ σ (it simply means that there’s no finite branch in σ)
and (W0, W1, . . . Wn−1) ∈ σ (every node on a branch is in σ).

Definition 2.8. Let σ be a pruned subtree of the tree of all legal positions T .
By [σ] we denote the set of all infinite branches of σ, i.e. infinite sequences
(W0, W1, . . .) such that (W0, W1, . . . Wn) ∈ σ for any n ∈ N.

Definition 2.9. A strategy for II in G⋆⋆(A) is a pruned subtree σ ⊆ T such that
(i) σ is nonempty,
(ii) if (U0, V0, . . . , Un, Vn) ∈ σ, then for all open nonempty Un+1 ⊆ Vn,
(U0, V0, . . . , Un, Vn, Un+1) ∈ σ,

(iii) if (U0, V0, . . . , Un) ∈ σ, then for a unique Vn, (U0, V0, . . . , Un, Vn) ∈ σ.
1
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Intuitively, a strategy σ works as follows: I starts playing U0 as any
open subset of X , then II plays unique (by (iii)) V0 such that (U0, V0) ∈ σ.
Then I responds by playing any U1 ⊆ V0 and II plays unique V1 such that
(U0, V0, U1, V1) ∈ σ, etc.

Definition 2.10. A strategy σ is a winning strategy for II if for any game
(U0, V0 . . .) ∈ [σ] player II wins, i.e.

⋂

n Vn ⊆ A.

Now we can state the key theorem.

Theorem 2.11 (Banach-Mazur, Oxtoby). Let X be a nonempty topological
space and let A⊆ X . Then A is comeagre⇔ II has a winning strategy in G⋆⋆(A).

In order to prove it we add an auxiliary definition and lemma.

Definition 2.12. Let S ⊆ σ be a pruned subtree of tree of all legal positions
T and let p = (U0, V0, . . . , Vn) ∈ S. We say that S is comprehensive for p if the
family Vp = {Vn+1 | (U0, V0, . . . , Vn, Un+1, Vn+1) ∈ S} (it may be that n = −1,
which means p = ;) is pairwise disjoint and

⋃

Vp is dense in Vn (where we
think that V−1 = X ). We say that S is comprehensive if it is comprehensive for
each p = (U0, V0, . . . , Vn) ∈ S.

Fact 2.13. If σ is a winning strategy for II then there exists a nonempty com-
prehensive S ⊆ σ.

Proof. We construct S recursively as follows:
(1) ; ∈ S,
(2) if (U0, V0, . . . , Un) ∈ S, then (U0, V0, . . . , Un, Vn) ∈ S for the unique Vn

given by the strategy σ,
(3) let p = (U0, V0, . . . , Vn) ∈ S. For a possible player I ’s move Un+1 ⊆ Vn

let U⋆n+1 be the unique set player II would respond with by σ. Now,
by Zorn’s Lemma, let Up be a maximal collection of nonempty open
subsets Un+1 ⊆ Vn such that the set {U⋆n+1 | Un+1 ∈ Up} is pairwise
disjoint. Then put in S all (U0, V0, . . . , Vn, Un+1) such that Un+1 ∈
Up. This way S is comprehensive for p: the family Vp = {Vn+1 |
(U0, V0, . . . , Vn, Un+1, Vn+1) ∈ S} is exactly {U⋆n+1 | Un+1 ∈ Up}, which is
pairwise disjoint and

⋃

Vp is obviously dense in Vn by the maximal-
ity of Up – if there was any open set Ũn+1 ⊆ Vn disjoint from

⋃

Vp,
then Ũ⋆n+1 ⊆ Ũn+1 would be also disjoint from

⋃

Vp, so the family
Up ∪ {Ũn+1} would violate the maximality of Up. □

Lemma 2.14. Let S be a nonempty comprehensive pruned subtree of a strategy
σ. Then:

(i) For any open Vn ⊆ X there is at most one p = (U0, V0, . . . , Un, Vn) ∈ S.
(ii) Let Sn = {Vn | (U0, V0, . . . , Vn) ∈ S} for n ∈ N (i.e. Sn is a family of

all possible choices player II can make in its n-th move according to S).
Then
⋃

Sn is open and dense in X .
(iii) Sn is a family of pairwise disjoint sets.

Proof. (i): Suppose that there are some p = (U0, V0, . . . , Un, Vn), p′ =
(U ′0, V ′0 , . . . , U ′n, V ′n) such that Vn = V ′n and p ̸= p′. Let k be the smallest index
such that those sequences differ. We have two possibilities:
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• Uk = U ′k and Vk ̸= V ′k – this cannot be true simply by the fact that S is
a subset of a strategy (so Vk is unique for Uk).
• Uk ̸= U ′k: by the comprehensiveness of S we know that for q =
(U0, V0, . . . , Uk−1, Vk−1) the set Vq is pairwise disjoint. Thus Vk∩V ′k = ;,
because Vk, V ′k ∈ Vq. But this leads to a contradiction – Vn cannot be
a nonempty subset of both Vk, V ′k .

(ii): The lemma is proved by induction on n. For n = 0 it follows trivially
from the definition of comprehensiveness. Now suppose the lemma is true
for n. Then the set

⋃

Vn∈Sn

⋃

VpVn
(where pVn

is given uniquely from (i)) is
dense and open in X by the induction hypothesis. But

⋃

Sn+1 is exactly this
set, thus it is dense and open in X .

(iii): We will prove it by induction on n. Once again, the case n = 0
follows from the comprehensiveness of S. Now suppose that the sets in Sn
are pairwise disjoint. Take some x ∈ Vn+1 ∈ Sn+1. Of course

⋃

Sn ⊇
⋃

Sn+1,
thus by the inductive hypothesis x ∈ Vn for the unique Vn ∈ Sn. It must be
that Vn+1 ∈ VpVn

, because Vn is the only superset of Vn+1 in Sn. But VpVn
is

disjoint, so there is no other V ′n+1 ∈ VpVn
such that x ∈ V ′n+1. Moreover, there

is no such set in Sn+1 \ VpVn
, because those sets are disjoint from Vn. Hence

there is no V ′n+1 ∈ Sn+1 other than Vn such that x ∈ V ′n+1. We’ve chosen x and
Vn+1 arbitrarily, so Sn+1 is pairwise disjoint. □

Now we can move to the proof of the Banach-Mazur theorem.

Proof of theorem 2.11. ⇒: Let (An) be a sequence of dense open sets with
⋂

n An ⊆ A. The simply II plays Vn = Un ∩ An, which is nonempty by the
denseness of An.
⇐: Suppose II has a winning strategy σ. We will show that A is comeagre.

Take a comprehensive S ⊆ σ. We claim that S =
⋂

n

⋃

Sn ⊆ A. By the
lemma 2.14, (ii) sets

⋃

Sn are open and dense, thus A must be comeagre.
Now we prove the claim towards contradiction.

Suppose there is x ∈ S \ A. By the lemma 2.14, (iii) for any n there
is unique x ∈ Vn ∈ Sn. It follows that pV0

⊂ pV1
⊂ . . .. Now the game

(U0, V0, U1, V1, . . .) =
⋃

n pVn
∈ [S] ⊆ [σ] is not winning for player II, which

contradicts the assumption that σ is a winning strategy. □

Corollary 2.15. If we add a constraint to the Banach-Mazur game such that
players can only choose basic open sets, then the theorem 2.11 still suffices.

Proof. If one adds the word basic before each occurrence of word open in
previous proofs and theorems then they all will still be valid (except for ⇒,
but its an easy fix – take Vn a basic open subset of Un ∩ An). □

This corollary will be important in using the theorem in practice – it’s much
easier to work with basic open sets rather than any open sets.

3. Fraïssé classes

In this section we will take a closer look at classes of finitely generated
structures with some characteristic properties. More specifically, we will
describe a concept developed by a French mathematician Roland Fraïssé
called Fraïssé limit.
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3.1. Definitions.

Definition 3.1. Let L be a signature and M be an L-structure. The age of M
is the class K of all finitely generated structures that embeds into M . The
age of M is also associated with class of all structures embeddable in M up to
isomorphism.

Definition 3.2. We say that M has countable age when its age has countably
many isomorphism types of finitely generated structures.

Definition 3.3. Let K be a class of finitely generated structures. K has
hereditary property (HP) if for any A∈K , any finitely generated substructure
B of A it holds that B ∈K .

Definition 3.4. LetK be a class of finitely generated structures. We say that
K has joint embedding property (JEP) if for any A, B ∈K there is a structure
C ∈K such that both A and B embed in C .

Fraïssé has shown fundamental theories regarding age of a structure, one
of them being the following one:

Fact 3.5. Suppose L is a signature and K is a nonempty finite or countable set
of finitely generated L-structures. Then K has the HP and JEP if and only if K
is the age of some finite or countable structure.

Beside the HP and JEP Fraïssé has distinguished one more property of the
class K , namely amalgamation property.

Definition 3.6. LetK be a class of finitely generated L-structures. We say that
K has the amalgamation property (AP) if for any A, B, C ∈K and embeddings
f : A→ B, g : A→ C there exists D ∈ K together with embeddings h: B→ D
and j : C → D such that h ◦ f = j ◦ g.

D

B C

A

h j

gf

Definition 3.7. Let M be an L-structure. M is ultrahomogeneous if every
isomorphism between finitely generated substructures of M extends to an
automorphism of M .

Having those definitions we can provide the main Fraïssé theorem.

Theorem 3.8 (Fraïssé theorem). Let L be a countable language and let K be
a nonempty countable set of finitely generated L-structures which has HP, JEP
and AP. Then K is the age of a countable, ultrahomogeneous L-structure M .
Moreover, M is unique up to isomorphism. We say that M is a Fraïssé limit of
K and denote this by M = Flim(K ).

This is a well known theorem. One can read a proof of this theorem in
Wilfrid Hodges’ classical book Model Theory [1]. In the proof of this theorem
appears another, equally important 3.10.
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Definition 3.9. We say that an L-structure M is weakly ultrahomogeneous
if for any A, B finitely generated substructures of M such that A ⊆ B and an
embedding f : A→ M there is an embedding g : B→ M which extends f .

A D

B

⊆

f

g

Lemma 3.10. A countable structure is ultrahomogeneous if and only if it is
weakly ultrahomogeneous.

This lemma will play a major role in the later parts of the paper. Weak
ultrahomogeneity is an easier and more intuitive property and it will prove
useful when recursively constructing the generic automorphism of a Fraïssé
limit.

3.2. Random graph. In this section we’ll take a closer look on a class of
finite unordered graphs, which is a Fraïssé class.

The language of unordered graphs L consists of a single binary relational
symbol E. If G is an L-structure then we call it a graph, and its elements
vertices. If for some vertices u, v ∈ G we have G |= uEv then we say that there
is an edge connecting u and v. If G |= ∀x∀y(x E y↔ yEx) then we say that G
is an unordered graph. From now on we omit the word unordered and graphs
as unordered.

Proposition 3.11. Let G be the class of all finite graphs. G is a Fraïssé class.

Proof. G is of course countable (up to isomorphism) and has the HP (graph
substructure is also a graph). It has JEP: having two finite graphs G1, G2 take
their disjoint union G1 ⊔ G2 as the extension of them both. G has the AP.
Having graphs A, B, C , where B and C are supergraphs of A, we can assume
without loss of generality, that (B \A)∩ (C \A) = ;. Then A⊔ (B \A)⊔ (C \A) is
the graph we’re looking for (with edges as in B and C and without any edges
between B \ A and C \ A). □

Definition 3.12. The random graph is the Fraïssé limit of the class of finite
graphs G denoted by Γ = Flim(G ).

The concept of the random graph emerges independently in many fields
of mathematics. For example, one can construct the graph by choosing at
random for each pair of vertices if they should be connected or not. It turns
out that the graph constructed this way is isomorphic to the random graph
with probability 1.

The random graph Γ has one particular property that is unique to the
random graph.

Fact 3.13 (random graph property). For each finite disjoint X , Y ⊆ Γ there
exists v ∈ Γ \ (X ∪ Y ) such that ∀u ∈ X (vEu) and ∀u ∈ Y (¬vEu).

Proof. Take any finite disjoint X , Y ⊆ Γ. Let GX Y be the subgraph of Γ induced
by the X ∪ Y . Let H = GX Y ∪ {w}, where w is a new vertex that does not
appear in GX Y . Also, w is connected to all vertices of GX Y that come from X
and to none of those that come from Y . This graph is of course finite, so it
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is embeddable in Γ. Without loss of generality assume that this embedding
is simply inclusion. Let f be the partial isomorphism from X ⊔ Y to H, with
X and Y projected to the part of H that come from X and Y respectively. By
the ultrahomogeneity of Γ this isomorphism extends to an automorphism
σ ∈ Aut(Γ). Then v = σ−1(w) is the vertex we sought. □

Fact 3.14. If a countable graph G has the random graph property, then it is
isomorphic to the random graph Γ.

Proof. Enumerate vertices of both graphs: Γ = {a1, a2 . . .} and G = {b1, b2 . . .}.
We will construct a chain of partial isomorphisms fn : Γ → G such that ; =
f0 ⊆ f1 ⊆ f2 ⊆ . . . and an ∈ dom( fn) and bn ∈ rng( fn).
Suppose we have fn. We seek b ∈ G such that fn ∪ {〈an+1, b〉} is a partial

isomorphism. If an+1 ∈ dom fn, then simply b = fn(an+1). Otherwise, let
X = {a ∈ Γ | aEΓan+1} ∩ dom fn, Y = X c ∩ dom fn, i.e. X are vertices of
dom fn that are connected with an+1 in Γ and Y are those vertices that are not
connected with an+1. Let b be a vertex of G that is connected to all vertices
of fn[X ] and to none fn[Y ] (it exists by the random graph property). Then
fn ∪{〈an+1, b〉} is a partial isomorphism. We find a for the bn+1 in the similar
manner, so that fn+1 = fn ∪ {〈an+1, b〉, 〈a, bn+1〉} is a partial isomorphism.

Finally, f =
⋃∞

n=0 fn is an isomorphism between Γ and G. Take any a, b ∈
Γ. Then for some big enough n we have that aEΓ b ⇔ fn(a)EG fn(b) ⇔
f (a)EG f (b). □

Using this fact one can show that the graph constructed in the probabilistic
manner is in fact isomorphic to the random graph Γ.

Definition 3.15. We say that a Fraïssé class K has weak Hrushovski property
(WHP) if for every A∈ K and an isomorphism of its substructures p : A→ A
(also called a partial automorphism of A), there is some B ∈K such that p can
be extended to an automorphism of B, i.e. there is an embedding i : A→ B
and a p̄ ∈ Aut(B) such that the following diagram commutes:

B B

A A

p̄

i
p

i

Proposition 3.16. The class of finite graphs G has the weak Hrushovski prop-
erty.

Proof. It may be there some day, but it may not! □

3.3. Graphs with automorphism. The language and theory of unordered
graphs is fairly simple. We extend the language by one unary symbol σ and
interpret it as an arbitrary automorphism on the graph structure. It turns out
that the class of such structures is a Fraïssé class.

Proposition 3.17. LetH be the class of all finite graphs with an automorphism,
i.e. structures in the language (E,σ) such that E is a symmetric relation and σ
is an automorphism on the structure. H is a Fraïssé class.
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Proof. Countability and HP are obvious, JEP follows by the same argument
as in plain graphs. We need to show that the class has the amalgamation
property.

Take any (A,α), (B,β), (C ,γ) ∈H such thatAembeds into B and C . Without
the loss of generality we may assume that B ∩ C = A and α ⊆ β,γ . Let D be
the amalgamation of B and C over A as in the proof for the plain graphs.
We will define the automorphism δ ∈ Aut(D) so it extends β and γ . We let
δ ↾B= β,δ ↾C= γ . Let’s check the definition is correct. We have to show that
(uEDv↔ δ(u)EDδ(v)) holds for any u, v ∈ D. We have two cases:

• u, v ∈ X , where X is either B or C . This case is trivial.
• u ∈ B \ A, v ∈ C \ A. Then δ(u) = β(u) ∈ B \ A, similarly δ(v) =

γ(v) ∈ C \ A. This follows from the fact, that β ↾A= α, so for any w ∈
A β−1(w) = α−1(w) ∈ A, similarly for γ . Thus, from the construction
of D, ¬uEDv and ¬δ(u)EDδ(v).

□

The proposition says that there is a Fraïssé for the classH of finite graphs
with automorphisms. We shall call it (Π,σ). Not surprisingly, Π is in fact a
random graph.

Proposition 3.18. The Fraïssé limit of H interpreted as a plain graph (i.e. as
a reduct to the language of graphs) is isomorphic to the random graph Γ.

Proof. It is enough to show that Π = Flim(H ) has the random graph property.
Take any finite disjoint X , Y ⊆Π. Without the loss of generality assume that
X ∪ Y is σ-invariant, i.e. σ(v) ∈ X ∪ Y for v ∈ X ∪ Y . This assumption can be
made because there are no infinite orbits in σ, which in turn is due to the
fact that H is the age of Π.

Let GX Y be the graph induced by X∪Y . Take H = GX Y ⊔v as a supergraph of
GX Y with one new vertex v connected to all vertices of X and to none of Y . By
the proposition 3.16 we can extend H together with its partial isomorphism
σ ↾X∪Y to a graph R with automorphism τ. Once again, without the loss of
generality we can assume that R ⊆Π, because H is the age of Π. But R ↾GX Y

together with τ ↾GX Y
are isomorphic to the GX Y with σ ↾GX Y

.
Thus, by ultrahomogeneity of Π this isomorphism extends to an automor-

phism θ of (Π,σ). Then θ(v) is the vertex that is connected to all vertices of
X and none of Y , because θ[R ↾X ] = X ,θ[R ↾Y ] = Y . □

Theorem 3.19. Let C be a Fraïssé class of finite structures in a relational
language L of some theory T . Let D be a class of finite structures of the theory
T in a relational language L with additional unary function symbol interpreted
as an automorphism of the structure. If C has the weak Hrushovski property
and D is a Fraïssé class then the Fraïssé limit of C is isomorphic to the Fraïssé
limit of D reduced to the language L.

Proof. Let Γ = Flim(C ) and (Π,σ) = Flim(D). By the Fraïssé theorem 3.8 it
suffices to show that the age of Π is C and that it has the weak ultrahomo-
geneity in the class C . The former comes easily, as for every structure A∈ C
we have the structure (A, idA) ∈ D, which means that the structure A embedds
into Π. Also, if a structure (B,β) ∈ D embedds into D, then B ∈ C . Hence,
C is indeed the age of Π.
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Now, take any structure A, B ∈ C such that A ⊆ B. Without the loss of
generality assume that A= B ∩Π. Let Ā be the smallest structure closed on
the automorphism σ and containg A. It is finite, as C is the age of Π. By the
weak Hrushovski property, ofC let (B̄,β) be a structure extending (B∪Ā,σ ↾Ā).
Again, we may assume that B ∪ Ā⊆ B̄. Then, by the fact that Π is a Fraïssé
limit of D there is an embedding f : (B̄,β)→ (Π,σ) such that the following
diagram commutes:

(A,;) (Ā,σ ↾A) (Π,σ)

(B,σ ↾B) (B̄,β)

⊆

⊆

⊆

⊆

⊆

f

Then we simply get the following diagram:

A Π

B

⊆

⊆

f ↾B

which proves that Π is indeed a weakly ultrahomogeneous structure in C .
Hence, it is isomorphic to Γ. □

4. Conjugacy classes in automorphism groups

TODO:
• w głównym dowodzie mogę użyć wprost AP, nie muszę tego uzasad-
niać jeszcze raz.

Let M be a countable L-structure. We define a topology on the G = Aut(M):
for any finite function f : M → M we have a basic open set [ f ]G = {g ∈ G |
f ⊆ g}.

4.1. Prototype: pure set. In this section, M = (M ,=) is an infinite countable
set (with no structure beyond equality).

Proposition 4.1. If f1, f2 ∈ Aut(M), then f1 and f2 are conjugate if and only if
for each n ∈ N∪ {ℵ0}, f1 and f2 have the same number of orbits of size n.

Theorem 4.2. Let σ ∈ Aut(M) be an automorphism with no infinite orbit and
with infinitely many orbits of size n for every n > 0. Then the conjugacy class
of σ is comeagre in Aut(M).

Proof. We will show that the conjugacy class of σ is an intersection of count-
ably many comeagre sets.

Let An = {α ∈ Aut(M) | α has infinitely many orbits of size n}. This set is
comeagre for every n> 0. Indeed, we can represent this set as an intersection
of countable family of open dense sets. Let Bn,k be the set of all finite functions
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β : M → M that consists of exactly k distinct n-cycles. Then:
An = {α ∈ Aut(M) | α has infinitely many orbits of size n}

=
∞
⋂

k=1

{α ∈ Aut(M) | α has at least k orbits of size n}

=
∞
⋂

k=1

⋃

β∈Bn,k

[β]Aut(M),

where indeed,
⋃

β∈Bn,k
[β]Aut(M) is dense in Aut(M): take any finite γ : M → M

such that [γ]Aut(M) is nonempty. Then also
⋃

β∈Bn,k
[β]Aut(M) ∩ [γ]Aut(M) ̸= ;,

one can easily construct a permutation that extends γ and have at least k
many n-cycles.

Now we see that A=
⋂∞

n=1 An is a comeagre set consisting of all functions
that have infinitely many n-cycles for each n. The only thing left to show is
that the set of functions with no infinite cycle is also comeagre. Indeed, for
m ∈ M let Bm = {α ∈ Aut(M) | m has finite orbit in α}. This is an open dense
set. It is a sum over basic open sets generated by finite permutations with m
in their domain. Denseness is also easy to see.

Finally, by the proposition 4.1, we can say that

σAut(M) =
∞
⋂

n=1

An ∩
⋂

m∈M
Bm,

which concludes the proof. □

4.2. More general structures.

Fact 4.3. Suppose M is an arbitrary structure and f1, f2 ∈ Aut(M). Then f1 and
f2 are conjugate if and only if (M , f1)∼= (M , f2) as structures with one additional
unary relation that is an automorphism.

Proof. Suppose that f1 = g−1 f2 g for some g ∈ Aut(M). Then g is the auto-
morphism we’re looking for. On the other hand if g : (M , f1)→ (M , f2) is an
isomorphism, then g◦ f1 = f2◦g which exactlymeans that f1, f2 conjugate. □

Theorem 4.4. Let Γ be the Fraïssé limit of the class of all finite graphs K .
Then Γ has a generic automorphism τ ∈ Aut(Γ), i.e. the conjugacy class of τ is
comeagre in G = Aut(Γ).

Proof. We will construct a strategy for the second player in the Banach-Mazur
game on the topological space G. This strategy will give us a subset A ⊆ G
and as we will see, this will also be a subset of the conjugacy class of τ. By
the Banach-Mazur theorem 2.11 this will prove that the class is comeagre.

Recall, G has a basis consisting of open sets {g ∈ G | g ↾A= g0 ↾A} for some
finite set A⊆ Γ and some automorphism g0 ∈ G. In other words, a basic open
set is a set of all extensions of some finite partial isomorphism g0 of Γ. By
Bg ⊆ G we denote a basic open subset given by a finite partial isomorphism
g. From now on we will consider only finite partial isomorphism g such that
Bg is nonempty.

With the use of corollary 2.15 we can consider only games, where both
players choose finite partial isomorphisms. Namely, player I picks functions
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f0, f1, . . . and player II chooses g0, g1, . . . such that f0 ⊆ g0 ⊆ f1 ⊆ g1 ⊆ . . .,
which identify the corresponding basic open subsets B f0 ⊇ Bg0

⊇ . . ..
Our goal is to choose gi in such a manner that the resulting function g =
⋂∞

i=0 gi will be an automorphism of the random graph such that (Γ, g) =
FlimH , i.e. the Fraïssé limit of finite graphs with automorphism. Precisely,
⋂∞

i=0 Bgi
= {g}. By the Fraïssé theorem 3.8 it will follow that (Γ, g)∼= (Π,σ).

By the proposition 3.18 we can assume without the loss of generality that
Π = Γ as a plain graph. Hence, by the fact 4.3, g and σ conjugate in G.

Once again, by the Fraïssé theorem 3.8 and the 3.10 lemma constructing
gi ’s in a way such that age of (Γ, g) is exactly H and so that it is weakly
ultrahomogeneous will produce expected result. First, let us enumerate all
pairs of finite graphs with automorphism {〈(An,αn), (Bn,βn)〉}n∈N such that
the first element of the pair embeds by inclusion in the second, i.e. (An,αn) ⊆
(Bn,βn). Also, it may be that An is an empty graph. We enumerate the vertices
of the random graph Γ = {v0, v1, . . .}.

Fix a bijection γ : N×N→ N such that for any n, m ∈ Nwe have γ(n, m)≥ n.
This bijection naturally induces a well ordering onN×N. This will prove useful
later, as the main argument of the proof will be constructed as a bookkeeping
argument.

Just for sake of fixing a technical problem, let g−1 = ; and X−1 = ;. Suppose
that player I in the n-th move chooses a finite partial isomorphism fn. We will
construct gn ⊇ fn and a set Xn ⊆ N2 such that following properties hold:

(i) gn is an automorphism of the induced subgraph Γn,
(ii) gn(vn) and g−1

n (vn) are defined,
(iii) let {〈(An,k,αn,k), (Bn,k,βn,k), fn,k〉}k∈N be the enumeration of all pairs

of finite graphs with automorphism such that the first is a substructure
of the second, i.e. (An,k,αn,k) ⊆ (Bn,k,βn,k), and fn,k is an embedding
of (An,k,αn,k) in the Γn−1 (which is the graph induced by gn−1). Let
(i, j) = min{({0, 1, . . .} × N) \ Xn−1} (with the order induced by γ).
Then Xn = Xn−1 ∪ {(i, j)} and (Bn,k,βn,k) embeds in (Γn, gn) so that
this diagram commutes:

(Γn, gn)

(Bi, j ,βi, j) (Γn−1, gn−1)

(Ai, j ,αi, j)

f̂i, j ⊆

fi, j⊆

First item makes sure that no infinite orbit will not be present in g. The
second item together with the first one are necessary for g to be an automor-
phism of Γ. The third item is the one that gives weak ultrahomogeneity. Now
we will show that indeed such gn may be constructed.

First, we will suffice the item (iii). Namely, we will construct Γ′n, g ′n such
that gn−1 ⊆ g ′n and fi, j extends to an embedding of (Bi, j ,βi, j) to (Γ′n, g ′n). But
this can be easily done by the fact, that H has the amalgamation property.
Moreover, without the loss of generality we can assume that all embeddings
are inclusions.
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(Γ′n, g ′n)

(Bi, j ,βi, j) (Γn−1, gn−1)

(Ai, j ,αi, j)

⊆ ⊆

⊆⊆

It may be also assumedwithout the loss of generality thatΓ′n ⊆ Γ. Of course
by the recursive assumption Γn−1 ⊆ Γ. The Γ′n \Γn−1 = Bi, j \Ai, j can be found
in Γ by the random graph property – we can find vertices of the remaining
part of Bi, j each at a time so that all edges are correct.

Now, by the WHP ofK we can extend the graph Γ′n∪{vn} together with its
partial isomorphism g ′n to a graph Γn together with its automorphism gn ⊇ g ′n
and without the loss of generality we may assume that Γn ⊆ Γ. This way
we’ve constructed gn that has all desired properties.

Now we need to see that g =
⋂∞

n=0 gn is indeed an automorphism of Γ such
that (Γ, g) has the ageH and is weakly ultrahomogeneous. It is of course an
automorphism of Γ as it is defined for every v ∈ Γ and is a sum of increasing
chain of finite automorphisms.

Take any finite graph with automorphism (B,β). Then, there are i, j such
that (B,β) = (Bi, j ,βi, j) and Ai, j = ;. By the bookkeeping there was n such that
(i, j) =min{{0,1, . . .}×N\Xn−1}. This means that (B,β) embeds into (Γn, gn),
hence it embeds into (Γ, g), thus it has age H . With a similar argument we
can see that (Γ, g) is weakly ultrahomogeneous.

By this we know that g and σ conjugate in G. As we stated in the beginning
of the proof, the set A of possible outcomes of the game (i.e. possible g ’s we
end up with) is comeagre in G, thus σG is also comeagre and σ is a generic
automorphism, as it contains a comeagre set A. □

Corollary 4.5. Let W be a Fraïssé class of finitely generated L-structures of
a theory T . Let V be the class of finitely generated structures of T with an
additional unary function interpreted as an automoprphism of the structure. If
W has weak Hrushovski property and V is a Fraïssé class, then W has a generic
automorphism.

TODO: pokazać że w ogólności granica Fraissego V bez tego automorfizmu
jest izomorficzna z W, dopiero wtedy można ten dowód tak uogólnić.

Proof. The proof is an abstract version of the theorem for the random graph.
□

4.3. Properties of the generic automorphism.

Proposition 4.6. Let σ be the generic automorphism of the random graph Γ.
Then the graph induced by the set of the fixed points of σ is isomorphic to Γ.

Proof. Let F = {v ∈ Γ | σ(v) = v}. It suffices to show that F is infinite and has
the random graph property. □
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