1. INTRODUCTION
2. PRELIMINARIES
2.1. Descriptive set theory.

Definition 2.1. Suppose X is a topological space and A € X. We say that A
is meagre in X if A= J,cnAn, Where A, are nowhere dense subsets of X (i.e.

Int(A,) = 0).

Definition 2.2. We say thatA is comeagre in X if it is a complement of a meagre
set. Equivalently, a set is comeagre iff it contains a countable intersection of
open dense sets.
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Every countable set is nowhere dense in any T; space, so, for example, Q
is meagre in R (though being dense), which means that the set of irrationals
is comeagre. Another example is...

Definition 2.3. We say that a topological space X is a Baire space if every
comeagre subset of X is dense in X (equivalently, every meagre set has empty
interior).

Definition 2.4. Suppose X is a Baire space. We say that a property P holds
generically for a point in x € X if {x € X | P holds for x} is comeagre in X.

Definition 2.5. Let X be a nonempty topological space and let A C X. The
Banach-Mazur game of A, denoted as G**(A) is defined as follows: Players I
and II take turns in playing nonempty open sets Uy, V,, Uy, V3, ... such that
Uy 2V 2 U; 2 V; 2.... We say that player II wins the game if (), V,, CA.

There is an important theorem on the Banach-Mazur game: A is comeagre
iff IT can always choose sets V;, V;,... such that it wins. Before we prove it
we need to define notions necessary to formalise and prove the theorem.

Definition 2.6. T is the tree of all legal positions in the Banach-Mazur game
G**(A) when T consists of all finite sequences (W, Wy, ..., W, ), where W; are
nonempty open sets such that Wy 2 W; 2 ... 2 W,.. In another words, T is a
pruned tree on {W C X | Wis open nonempty}.

By [T] we denote the set of all "infinite branches" of T, i.e. infinite se-
quences (U, Vy, ...) such that (U, Vy,...U,,V,) € T for any n € N.

Definition 2.7. A strategy for II in G**(A) is a subtree ¢ C T such that
(i) o is nonempty,
@Gi) if (Uy, Vy,-...,V,) € o, then for all open nonempty U,,; S V,,
(Uo, Vs -+ +> Vi, Upyr) € 0,
(iii) if (Uy, V, ..., U,) € o, then for unique V,,, (Uy, Vy,...,U,, V) € 0.

Intuitively, a strategy o works as follows: I starts playing U, as any open
subset of X, then IT plays unique (by (iii)) V, such that (Uy, V) € 6. Then I re-
sponds by playing any U; C V,, and IT plays uniqe V; such that (U,, V,, U1, V) €
o, etc.

Definition 2.8. A strategy o is a winning strategy for II if for any game
(U, Vg -..) € [o] (where [o] is defined analogically to [T]) player I wins, i.e.
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Now we can state the key theorem.

Theorem 2.9. Let X be a nonempty topological space and let AC X. Then A is
comeagre < II has a winning strategy in G**(A).

In order to prove it we add an auxilary definition and lemma.

Definition 2.10. Let S be a pruned subtree of a strategy o and let p =
(U, Vo, ---, V) € S. We say that S is comprehensive for p if the family ¥, =
{Voe1 | (U, Vo, -+, Vi, Upe1, Vir1) € S} (it may be that n = —1, which means
p = 0) is pairwise disjoint and ¥, is dense in V, (where we think that
V., =X).

We say that S is comprehensive if it is comprehensive for any p =
(Us, Ve, ..., V,) €S.

Lemma 2.11. Let S be a comprehensive pruned subtree of a strategy o. Then:
(i) For any V, such that there is p = (Uy, V;,...,V,) €S, this p is unique.
@@) Let W, = {V, | (Uy, Vy,...,V,) €S}, i.e. W, is a family of all possible
choices player II can make in its n-th move. Then | JW, is open and
dense in X.
(iii) There exists such S.

Proof. (i): Suppose that there are some p = (Uy,Vy,...,Uy,V,), p' =
(Ug,Vy5---, U, V) such that V, = V) and p # p’. Let k be the smallest index
such that those sequences differ. We have two possibilities:

e Uy = U and V; # V, — this cannot be true simply by the fact that S is
a subset of a strategy (so V; is unique for Uy).

e Uy # U;: by the comprehensiveness of S we know that for q =
(Uo> Vos - - -» Uk—1, Vk—1) the set ¥, is pairwise disjoint. Thus VNV, =@,
because Vi, V, € ¥,. But this leads to a contradiction — V,, cannot be
a nonempty subset of both Vi, V.

(ii): The lemma is proved by induction on n. For n = 0 it follows trivially
from the definition of comprehensiveness. Now suppose the lemma is true
for n. Then the set Uvnewn U%, (py, is given uniquely from (i) is dense

and open in X by the induction hypothesis. But | JW,; is its superset, thus
(JW,1 is dense and open in X.
(iii): We construct S recursively as follows:

(1) pes,

(2) if (Uy, Vy,...,U,) €S, then (U,, Vy,...,U,,V,) € S for the unique V,
given by the strategy o,

(3) let p = (Uy, Vg, ..., V) €S, let U, be the unique set player IT would
play by o given that player I played U,,; € V,,. Now, by Zorn’s Lemma,
let %, be a maximal collection of nonempty open subsets U1 €V,

such that the set {U},, | Up41 € %,} is pairwise disjoint. Then put in
S all (U, Vo, - - -, Vi, Upyq) such that Uy, € %,. This way S is compre-
hensive for p: the family ¥, = {V,1 | (Up, Vo, -+, Vi, Ups1, Vis1) €S}
is exactly {U}, | Uy41 € %,}, which is pairwise disjoint and [ J ¥}, is
obviously dense in V, by it’s maximality — if there was any open set
Uns1 €V, disjoint from | ) %, then the family %, U {U,,} violates
the maximality of %,,.



Now we can move to the proof of the Banach-Mazur theorem.

Proof. =: Let (A,) be a sequence of dense open sets with (),A, € A. The
simply II plays V,, = U, NA,,, which is nonempty by the denseness of A,,.

<: Suppose II has a winning strategy o. We will show that A is comeagre.
Take a comprehensive S C . We claim that # = () [ JW, CA. By 2.11, (ii)
sets | JW, are open and dense, thus A must be comeagre. Now we prove the
claim.

(A.a.) Suppose there is x € # that is not in A. We will prove by induction
that for any n there is exactly one V,, € W, such that x € V,,. For n = 0 this
follows trivially by the comprehensiveness of S. Now suppose that there is
exactly one V,, € W, such that x € V,,. By our assumption thereisaV, , € W, 4
such that x € V, ;. By 2.11 we have unique Py = (Ug, Vys--5 Vo 1) €S It
must be that x € V!, so by the induction hypothesis V! =V,,, thus V!, € Y, -

n+1
But the family ¥, is disjoint, hence V,,; =V, , is unique.
Now the game (Up, Vo, U, Vy,...) = |, py, € [S]C [0] where x € V,, 3, ...
is not winning for player II, which contradicts the assumption that o is a

winning strategy. O

Pytania:

e Czy da sie co$ zrobi¢, zeby ¥ nie byto takie brzydkie?

e Jak to napisac, ze sie zrzyna z ksiazki?

e Dodatkowy przyktad pod def 2.2

e G*(A) czy G**(A)? Czy moze G**(X,A)? Jaki$ skrdt na to?

e w 2.11 (i), jak to tadniej sformutowac?

e w 2.11 (iii), moze to wyodrebni¢? Moze to da¢ jako pierwsze, a
pierwsze dwa pozniej?

e doda¢ tytut do 2.9

e czy w dowodzie twierdzenia napisa¢ jeszcze raz co to jest W, ?

e ostatni akapit dowodu twierdzenia, czy taka suma tych p,, to jest
sensowny napis? Jak to inaczej napisac?

2.2. Fraissé classes.

Fact 2.12 (Fraissé theorem). Then there exists a unique up to isomorphism
counable L-structure M such that...

Definition 2.13. For ¢, M as in Fact 2.12, we write FLim(%6) := M.

Fact 2.14. If ¢ is a uniformly locally finite Fraissé class, then FLim(¢) is X,-
categorical and has quantifier elimination.

3. CONJUGACY CLASSES IN AUTOMORPHISM GROUPS

3.1. Prototype: pure set. In this section, M = (M, =) is an infinite countable
set (with no structure beyond equality).

Proposition 3.1. If f;, f, € Aut(M), then f; and f, are conjugate if and only if
for each n e NU{X,}, f; and f, have the same number of orbits of size n.

Proposition 3.2. The conjugacy class of f € Aut(M) is dense if and only if...
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Proposition 3.3. If f € Aut(M) has an infinite orbit, then the conjugacy class
of f is meagre.

Proposition 3.4. An automorphism f of M is generic if and only if...

Proof. g
3.2. More general structures.

Proposition 3.5. Suppose M is an arbitrary structure and fi, f, € Aut(M).
Then f; and f, are conjugate if and only if (M, f;) = (M, f,).

Definition 3.6. We say that a Fraissé class ¢ has weak Hrushovski property
(WHP) if for every A € ¢ and partial automorphism p: A — A, there is some
B € % such that p can be extended to an automorphism of B, i.e. there is
an embedding i: A — B and a p € Aut(B) such that the following diagram
commutes:

B—L3B
T
p
A—— A
Proposition 3.7. Suppose € is a Fraissé class in a relational language with

WHP. Then generically, for an f € Aut(FLim(%)), all orbits of f are finite.

Proposition 3.8. Suppose 6 is a Fraissé class in an arbitrary countable lan-
guage with WHP. Then generically, for an f € Aut(FLim(%)) ...

3.3. Random graph.
Definition 3.9. The random graph is...
Fact 3.10. The

Proposition 3.11. Generically, the set of fixed points of f € Aut(M) is isomor-
phic to M (as a graph).
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