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1. Introduction

Model theory is a field of mathematics that classifies and constructs struc-
tures with particular properties (particularly those expressible in first order
logic). It describes classical mathematical objects in a broader context, ab-
stracts their properties and studies connections between seemingly unrelated
structures. This work studies limits of Fraïssé classes with additional com-
binatorial and categorical properties. Fraïssé classes are frequently used in
model theory, both as a source of examples and to analyse particular “generic”
structures.

The notion of Fraïssé class and its limit is due to the French logician Roland
Fraïssé. He also introduced the back-and-forth argument, a fundamental
model theoretical method in construction of elementarily equivalent struc-
tures, upon which Ehrenfeucht-Fraïssé games are based.

The prototypical example for this paper is the random graph 3.13 (also
known as the Rado graph), the Fraïssé limit of the class of finite undirected
graphs. It serves as a useful example, gives an intuition of the Fraïssé limits,
weak Hrushovski property and free amalgamation. Perhaps most importantly,
the random graph has a so-called generic automorphism 2.6, which was first
proved by Truss in [10], where he also introduced the term.

The key Theorem 4.5 says that a Fraïssé class with canonical amalgamation
and weak Hrushovski property has a generic automorphism. The fact that
such an automorphism exists in this case follows from the classical results
of Ivanov [3] and Kechris-Rosendal [5]. In this work we show a new way to
construct a generic automorphism by expanding the structures of the class by
a (total) automorphism and considering limit of such extended Fraïssé class.
We achieve this by using the Banach-Mazur games, a well known method in
the descriptive set theory, which proves useful in the study of comeagre sets.

In section 2 we introduce important notions from descriptive set theory and
category theory and prove the Banach-Mazur theorem. Section 3 is devoted to
Fraïssé classes and describes canonical amalgamation. In section 4 we prove
the main Theorem 4.5 by showing a construction of generic automorphism
of Fraïssé classes with WHP and canonical amalgamation. Finally, in the
section 5 we give examples and anti-examples of Fraïssé classes with those
properties.
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Wstęp

Teoria modeli jest działem matematyki zajmującym się klasyfikacją i kon-
strukcją struktur z określonymi cechami (szczególnie takimi, które da się
wyrazić logiką pierwszego rzędu). Opisuje klasyczne matematyczne obiekty
w szerszym kontekście, abstrahuje ich własności i opisuje połączenia między
pozornie niepowiązanymi strukturami. Niniejsza praca bada granicę klas
Fraïsségo z dodatkowymi kombinatorycznymi i kategoryjnymi własnościami.
Klasy Fraïsségo są powszechnie znanym i używanym konceptem w teorii
modeli, zarówno jako narzędzie opisujące “generyczne” struktury, jak i źródło
przykładów.

Klasy Fraïsségo i ich granice zostały opisane po raz pierwszy przez
francuskiego logika Rolanda Fraïsségo. Zawdzięczamy mu również argu-
ment “back-and-forth”, fundamentalną teoriomodelową metodę konstrukcji
elementarnie równoważnych struktur, na podstawie której bazują gry
Ehrenfeuchta-Fraïsségo.

Graf losowy 3.13, zwany również grafem Rado, jest prototypową strukturą
tej pracy. Graf losowymożna skonstruować jako granicę Fraïsségo klasy skońc-
zonych grafów nieskierowanych. Służy on jako użyteczny przykład, daje intu-
icję stojącą za konstrukcją granicy Fraïsségo, słabej własności Hrushovskiego
oraz wolnej amalgamacji. Ponadto, co najważniejsze dla niniejszej pracy, graf
losowy ma tak zwany generyczny automorfizm 2.6, co zostało po raz pierwsze
zdefiniowane i udowodnione przez Trussa w [10].

Kluczowe twierdzenie 4.5 mówi, że klasa Fraïsségo z kanoniczną amalga-
macją i słabą własnością Hrushovskiego ma generyczny automorfizm. Ist-
nienie takiego automorfizmu w tym przypadku wynika z wcześniejszych
klasycznych wyników Ivanova [3] oraz Kechrisa-Rosendala [5]. W tej pracy
pokazujemy nowy sposób konstrukcji generycznego automorfizmu poprzez
rozszerzenie struktur klasy o (totalny) automorfizm oraz analizę granicy
Fraïsségo nowo powstałej klasy. Posługujemy się przy tym grami Banacha-
Mazura, które są dobrze znanym narzędziem w deskryptywnej teorii mno-
gości.

W rozdziale 2 wprowadzamy istotne pojęcia z deskryptywnej teorii
mnogości, teorii kategorii i udowadniamy twierdzenie Banacha-Mazura.
Rozdział 3 poświęcony jest przedstawieniu klas Fraïsségo oraz kanonicznej
amalgamacji. W rozdziale 4 udowadniamy kluczowe Twierdzenie 4.5 przez
wskazanie konstrukcji generycznego automorfizmu granicy Fraïsségo klasy ze
słabą własnością Hrushovskiego oraz kanoniczną amalgamacją. W ostatnim
rozdziale 5 przytaczamy przykłady takich klas Fraïsségo.
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2. Preliminaries

Before we get to the main work of the paper, we need to establish basic
notions, known facts and theorems. This section provides a brief introduction
to the theory of Baire spaces and category theory. Most of the notions are
well known, interested reader may look at [4], [6]

2.1. Descriptive set theory. In this section we provide an important defini-
tion of a comeagre set. It is purely topological notion, the intuition may come
from the measure theory though. For example, in a standard Lebesuge mea-
sure on the real interval [0, 1], the set of rationals is of measure 0, although
being a dense subset of the [0, 1]. So, in a sense, the set of rationals ismeagre
in the interval [0, 1]. On the other hand, the set of irrational numbers is also
dense, but have measure 1, so it is comeagre.

This is only a rough approximation of the topological definition. The def-
initions are based on the Kechris’ book Classical Descriptive Set Theory [4].
One should look into it for more details and examples.
Definition 2.1. Suppose X is a topological space and A ⊆ X . We say that A
is meagre in X if A=

⋃

n∈N An, where An are nowhere dense subsets of X (i.e.
Int(Ān) = ;).
Definition 2.2. We say thatA is comeagre in X if it is a complement of ameagre
set. Equivalently, a set is comeagre if and only if it contains a countable
intersection of open dense sets.

Every countable set is meagre in any T1 space. So, Q is meagre in R
(although it is dense), which means that the set of irrationals is comeagre.
The Cantor set is nowhere dense, hence meagre in the [0,1] interval.
Definition 2.3. We say that a topological space X is a Baire space if every
comeagre subset of X is dense in X (equivalently, every meagre set has empty
interior).
Definition 2.4. Suppose X is a Baire space. We say that a property P holds
generically for a point x ∈ X if {x ∈ X | P holds for x} is comeagre in X .

Let M be a structure. We define a topology on the automorphism group
Aut(M) by the basis of open sets: for a finite function f : M → M we have a
basic open set [ f ]Aut(M) = {g ∈ Aut(M) | f ⊆ g}. This is a standard definition.
Fact 2.5. For a countable structure M , the topological space Aut(M) is a Baire
space.

This is in fact a very weak statement, it is also true that Aut(M) is a Polish
space (i.e. separable completely metrizable), and every Polish space is Baire.
However, those additional properties are not important in this study.
Definition 2.6. Let G = Aut(M) be the automorphism group of structure M .
We say that f ∈ G is a generic automorphism, if the conjugacy class of f is
comeagre in G.
Definition 2.7. Let X be a nonempty topological space and let A ⊆ X . The
Banach-Mazur game of A, denoted as G⋆⋆(A) is defined as follows: Players I
and II take turns in playing nonempty open sets U0, V0, U1, V1, . . . such that
U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ . . .. We say that player II wins the game if

⋂

n Vn ⊆ A.
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There is an important Theorem 2.13 on the Banach-Mazur game: A is
comeagre if and only if II can always choose sets V0, V1, . . . such that it wins.
Before we prove it we need to define notions necessary to formalise and prove
the theorem.

Definition 2.8. T is the tree of all legal positions in the Banach-Mazur game
G⋆⋆(A) when T consists of all finite sequences (W0, W1, . . . , Wn), where Wi are
nonempty open sets such that W0 ⊇W1 ⊇ . . . ⊇Wn.

Definition 2.9. We say that σ is a pruned subtree of the tree of all legal
positions T if σ ⊆ T , for any (W0, W1, . . . , Wn) ∈ σ, n≥ 0 there is a W such that
(W0, W1, . . . , Wn, W ) ∈ σ (it simply means that there’s no finite branch in σ)
and (W0, W1, . . . Wn−1) ∈ σ (every node on a branch is in σ).

Definition 2.10. Let σ be a pruned subtree of the tree of all legal positions
T . By [σ] we denote the set of all infinite branches of σ, i.e. infinite sequences
(W0, W1, . . .) such that (W0, W1, . . . Wn) ∈ σ for any n ∈ N.

Definition 2.11. A strategy for II in G⋆⋆(A) is a pruned subtree σ ⊆ T such
that

(i) σ is nonempty,
(ii) if (U0, V0, . . . , Un, Vn) ∈ σ, then for all open nonempty Un+1 ⊆ Vn,
(U0, V0, . . . , Un, Vn, Un+1) ∈ σ,

(iii) if (U0, V0, . . . , Un) ∈ σ, then for a unique Vn, (U0, V0, . . . , Un, Vn) ∈ σ.

Intuitively, a strategy σ works as follows: I starts playing U0 as any
open subset of X , then II plays unique (by (iii)) V0 such that (U0, V0) ∈ σ.
Then I responds by playing any U1 ⊆ V0 and II plays unique V1 such that
(U0, V0, U1, V1) ∈ σ, etc.

We will often denote a sequence U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ . . . of open sets as an
instance of a Banach-Mazur game, or just simply by a game.

Definition 2.12. A strategy σ is a winning strategy for II if for any instance
(U0, V0 . . .) ∈ [σ] of the Banach-Mazur game player II wins, i.e.

⋂

n Vn ⊆ A.

Theorem 2.13 (Banach-Mazur, Oxtoby). Let X be a nonempty topological
space and let A⊆ X . Then A is comeagre⇔ II has a winning strategy in G⋆⋆(A).

The statement of the theorem is once again taken from Kechris [4] 8.33.
However, the proof given in the book is brief, thus we present a detailed
version. In order to prove the theorem we add an auxiliary definition and
lemma.

Definition 2.14. Let S ⊆ σ be a pruned subtree of tree of all legal positions
T and let p = (U0, V0, . . . , Vn) ∈ S. We say that S is comprehensive for p if the
family Vp = {Vn+1 | (U0, V0, . . . , Vn, Un+1, Vn+1) ∈ S} (it may be that n = −1,
which means p = ;) is pairwise disjoint and

⋃

Vp is dense in Vn (where we
put V−1 = X ). We say that S is comprehensive if it is comprehensive for each
p = (U0, V0, . . . , Vn) ∈ S.

Fact 2.15. If σ is a winning strategy for II then there exists a nonempty com-
prehensive S ⊆ σ.

Proof. We construct S recursively as follows:
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(1) ; ∈ S,
(2) if (U0, V0, . . . , Un) ∈ S, then (U0, V0, . . . , Un, Vn) ∈ S for the unique Vn

given by the strategy σ,
(3) let p = (U0, V0, . . . , Vn) ∈ S. For a possible player move of player I

Un+1 ⊆ Vn let U⋆n+1 be the unique set player II would respond with
by σ. Now, by Zorn’s Lemma, let Up be a maximal collection of
nonempty open subsets Un+1 ⊆ Vn such that the set {U⋆n+1 | Un+1 ∈
Up} is pairwise disjoint. Then put in S all (U0, V0, . . . , Vn, Un+1) such
that Un+1 ∈ Up. This way S is comprehensive for p: the family Vp =
{Vn+1 | (U0, V0, . . . , Vn, Un+1, Vn+1) ∈ S} is exactly {U⋆n+1 | Un+1 ∈ Up},
which is pairwise disjoint and

⋃

Vp is obviously dense in Vn by the
maximality of Up – if there was any open set Ũn+1 ⊆ Vn disjoint from
⋃

Vp, then Ũ⋆n+1 ⊆ Ũn+1 would be also disjoint from
⋃

Vp, so the
family Up ∪ {Ũn+1} would violate the maximality of Up. □

Lemma 2.16. Let S be a nonempty comprehensive pruned subtree of a strategy
σ. Then:

(i) For any open Vn ⊆ X there is at most one p = (U0, V0, . . . , Un, Vn) ∈ S.
Let Sn = {Vn | (U0, V0, . . . , Vn) ∈ S} for n ∈ N (i.e. Sn is a family of all possible
choices player II can make in its n-th move according to S).

(ii)
⋃

Sn is open and dense in X .
(iii) Sn is a family of pairwise disjoint sets.

Proof. (i): Suppose that there are some p = (U0, V0, . . . , Un, Vn), p′ =
(U ′0, V ′0 , . . . , U ′n, V ′n) such that Vn = V ′n and p ̸= p′. Let k be the smallest index
such that those sequences differ. We have two possibilities:

• Uk = U ′k and Vk ̸= V ′k – this cannot be true simply by the fact that S is
a subset of a strategy (so Vk is unique for Uk).
• Uk ̸= U ′k: by the comprehensiveness of S we know that for q =
(U0, V0, . . . , Uk−1, Vk−1) the set Vq is pairwise disjoint. Thus Vk∩V ′k = ;,
because Vk, V ′k ∈ Vq. But this leads to a contradiction – Vn cannot be
a nonempty subset of both Vk, V ′k .

(ii): The lemma is proved by induction on n. For n = 0 it follows trivially
from the definition of comprehensiveness. Now suppose the lemma is true
for n. Then the set

⋃

Vn∈Sn

⋃

VpVn
(where pVn

is given uniquely from (i)) is
dense and open in X by the induction hypothesis. But

⋃

Sn+1 is exactly this
set, thus it is dense and open in X .

(iii): We will prove it by induction on n. Once again, the case n = 0
follows from the comprehensiveness of S. Now suppose that the sets in Sn
are pairwise disjoint. Take some x ∈ Vn+1 ∈ Sn+1. Of course

⋃

Sn ⊇
⋃

Sn+1,
thus by the inductive hypothesis x ∈ Vn for the unique Vn ∈ Sn. It must be
that Vn+1 ∈ VpVn

, because Vn is the only superset of Vn+1 in Sn. But VpVn
is

disjoint, so there is no other V ′n+1 ∈ VpVn
such that x ∈ V ′n+1. Moreover, there

is no such set in Sn+1 \ VpVn
, because those sets are disjoint from Vn. Hence

there is no V ′n+1 ∈ Sn+1 other than Vn such that x ∈ V ′n+1. We have chosen x
and Vn+1 arbitrarily, so Sn+1 is pairwise disjoint. □

Now we can move to the proof of the Banach-Mazur theorem.
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Proof of Theorem 2.13. ⇒: Let (An) be a sequence of dense open sets with
⋂

n An ⊆ A. Then II simply plays Vn = Un ∩ An, which is nonempty by the
denseness of An.
⇐: Suppose II has a winning strategy σ. We will show that A is comeagre.

Take a comprehensive S ⊆ σ. We claim that S =
⋂

n

⋃

Sn ⊆ A. By the
lemma 2.16, (ii) sets

⋃

Sn are open and dense, thus A must be comeagre.
Now we prove the claim towards contradiction.

Suppose there is x ∈ S \ A. By the lemma 2.16, (iii) for any n there
is unique x ∈ Vn ∈ Sn. It follows that pV0

⊂ pV1
⊂ . . .. Now the game

(U0, V0, U1, V1, . . .) =
⋃

n pVn
∈ [S] ⊆ [σ] is not winning for player II, which

contradicts the assumption that σ is a winning strategy. □

Corollary 2.17. If we add a constraint to the Banach-Mazur game such that
players can only choose basic open sets, then the Theorem 2.13 still suffices.

Proof. If one adds the word basic before each occurrence of word open in
previous proofs and theorems then they still will be valid (except for⇒, but
its an easy fix – take for Vn a basic open subset of Un ∩ An). □

This corollary will be important in using the theorem in practice – it’s much
easier to work with basic open sets rather than arbitrary open sets.

2.2. Category theory. In this section we will give a short introduction to the
notions of category theory that will be necessary to generalize the key result
of the paper.

We will use a standard notation. If the reader is interested in a more
detailed introduction to the category theory, then it’s recommended to take
a look at [6]. Here we will shortly describe the standard notation.

A category C consists of a collection of objects (denoted as Obj(C ), but
most often simply as C ) and a collection of morphisms Mor(A, B) between
each pair of objects A, B ∈ C . We require that for each pair of morphisms
f : B→ C , g : A→ B there was a morphism f ◦ g : A→ C . If f : A→ B then we
say that A is the domain of f (Dom f ) and that B is the range of f (Rng f ).

For every A∈ C there is an identity morphism idA : A→ A such that for any
morphism f ∈Mor(A, B) we have that f ◦ idA = idB ◦ f .

We say that f : A → B is an isomorphism if there is (necessarily unique)
morphism g : B→ A such that g ◦ f = idA and f ◦ g = idB. Automorphism is
an isomorphism where A= B.

A functor is a “(homo)morphism“ of categories. We say that F : C →D is
a functor from category C to category D if it associates each object A ∈ C
with an object F(A) ∈ D, associates each morphism f : A→ B in C with a
morphism F( f ): F(A)→ F(B). We also require that F(idA) = idF(A) and that
for any (compatible) morphisms f , g in C , F( f ◦ g) = F( f )◦ F(g) should hold.

In category theory we distinguish covariant and contravariant functors.
Here, we only consider covariant functors, so we will simply say functor.

Fact 2.18. Functor F : C →D maps isomorphism f : A→ B in C to the isomor-
phism F( f ): F(A)→ F(B) in D.

A notion that will be very important for us is a “morphism of functors“
which is called natural transformation.



9

Definition 2.19. Let F, G be functors between the categories C ,D. A natural
transformation η is function that assigns to each object A of C a morphism ηA
in Mor(F(A), G(A)) such that for every morphism f : A→ B in C the following
diagram commutes:

A F(A) G(A)

B F(B) G(B)

f

ηA

F( f ) G( f )

ηB

Natural transformation has, nomen omen, natural properties. One particu-
larly interesting to us is the following fact.

Fact 2.20. Let η be a natural transformation of functors F, G from category C
to D. Then η is an isomorphism if and only if all of the component morphisms
are isomorphisms.

Proof. Suppose that ηA is an isomorphism for every A∈ C , where ηA : F(A)→
G(A) is the morphism of the natural transformation corresponding to A. Then
η−1 is simply given by the morphisms η−1

A .
Now assume that η is an isomorphism, i.e. η−1 ◦ η = idF . Ad contrario

assume that there is A ∈ C such that the component morphism ηA : F(A)→
G(A) is not an isomorphism. It means that η−1

A ◦ ηA ̸= idA, hence F(A) =
Dom(η−1 ◦η)(A) ̸= Rng(η−1 ◦η)(A) = F(A), which is obviously a contradiction.

□

Definition 2.21. In category theory, a diagram of type J in category C is a
functor D : J →C . J is called the index category of D. In other words, D is
of shape J .

For example, J = {−1 ← 0 → 1}, then a diagram D : J → C is called
a cospan. For example, if A, B, C are objects of C and f ∈ Mor(C , A), g ∈
Mor(C , B), then the following diagram is a cospan:

A B

C
gf

From now we omit explicit definition of the index category, as it is easily
referable from a picture.

Definition 2.22. Let A, B, C , D be objects in the category C with morphisms
e : C → A, f : C → B, g : A→ D, h: B → D such that g ◦ e = h ◦ f . Then the
following diagram:

D

A B

C

g h

e f
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is called a pushout diagram.

In both definitions of cospan and pushout diagrams we say that the object
C is the base of the diagram.

Definition 2.23. The cospan category of categoryC , referred to as Cospan(C ),
is the category of cospan diagrams of C , where morphisms between two
cospans are natural transformations of the underlying functors.

We define pushout category analogously and call it Pushout(C ).

From now on we work in subcategories of cospan diagrams and pushout di-
agrams where we fix the base structure. Formally, for a fixed C ∈ C , category
CospanC(C ) is the category of all cospans in Cospan(C ) such that the base of
the diagram is C . Natural transformation η of two diagrams in CospanC(C )
are such that the morphism ηC : C → C is an automorphism of C . PushoutC(C )
is defined analogously. In most contexts we consider only one base structure,
hence we will often write Pushout(C ) instead of PushoutC(C ).

3. Fraïssé classes

In this section we will take a closer look at classes of finitely generated
structures with some characteristic properties. More specifically, we will
describe a concept developed by a French mathematician Roland Fraïssé
called Fraïssé limit.

3.1. Definitions.

Definition 3.1. Let L be a signature and M be an L-structure. The age of M is
the class C of all finitely generated structures that embed into M . The age of
M is also associated with class of all finitely generated structures embeddable
in M up to isomorphism.

Definition 3.2. We say that a class C of finitely generated structures is es-
sentially countable if it has countably many isomorphism types of finitely
generated structures.

Definition 3.3. Let C be a class of finitely generated structures. C has
the hereditary property (HP) if for any A ∈ C and any finitely generated
substructure B of A it holds that B ∈ C .

Definition 3.4. Let C be a class of finitely generated structures. We say
that C has the joint embedding property (JEP) if for any A, B ∈ C there is a
structure C ∈ C such that both A and B embed in C .

C

A B

f g

In terms of category theory we may say that C is a category of finitely
generated structures where morphisms are embeddings of those structures.
Then the above diagram is a span diagram in category C .

Fraïssé has shown fundamental theorems regarding age of a structure, one
of them being the following one:
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Fact 3.5. Suppose L is a signature and C is a nonempty essentially countable
set of finitely generated L-structures. Then C has the HP and JEP if and only if
C is the age of some finite or countable structure.

Proof. One can read a proof of this fact in Wilfrid Hodges’ classical bookModel
Theory [1, Theorem 7.1.1]. □

Beside the HP and JEP Fraïssé has distinguished one more property of the
class C , namely the amalgamation property.

Definition 3.6. LetC be a class of finitely generated L-structures. We say that
C has the amalgamation property (AP) if for any A, B, C ∈ C and embeddings
e : C → A, f : C → B there exists D ∈ C together with embeddings g : A→ D
and h: B→ D such that g ◦ e = h ◦ f .

D

A B

C

g h

fe

In terms of category theory, C has the amalgamation property if every
cospan diagram can be extended to a pushout diagram in category C . We
will get into more details later, in the definition of canonical amalgamation
3.19.

Definition 3.7. Class C of finitely generated structures is a Fraïssé class if it
is essentially countable, has HP, JEP and AP.

Definition 3.8. Let M be an L-structure. M is ultrahomogeneous if every
isomorphism between finitely generated substructures of M extends to an
automorphism of M .

Having those definitions we can provide the main Fraïssé theorem.

Theorem 3.9 (Fraïssé theorem). Let L be a countable language and let C be
a nonempty countable set of finitely generated L-structures which has HP, JEP
and AP. Then C is the age of a countable, ultrahomogeneous L-structure M .
Moreover, M is unique up to isomorphism. We say that M is a Fraïssé limit of
C and denote this by M = Flim(C ).

Proof. Check the proof in [1, theorem 7.1.2]. □

Definition 3.10. We say that an L-structure M is weakly ultrahomogeneous
if for any A, B, finitely generated substructures of M , such that A⊆ B and an
embedding f : A→ M there is an embedding g : B→ M which extends f .

A D

B

⊆

f

g

Lemma 3.11. A countable structure is ultrahomogeneous if and only if it is
weakly ultrahomogeneous.
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Proof. Proof can be again found in [1, lemma 7.1.4(b)]. □

This lemma will play a major role in the later parts of the paper. Weak
ultrahomogeneity is an easier and more intuitive property and it will prove
useful when recursively constructing the generic automorphism of a Fraïssé
limit.

3.2. Random graph. In this section we’ll take a closer look on a class of
finite undirected graphs, which is a Fraïssé class.

The language of undirected graphs L consists of a single binary relational
symbol E. If G is an L-structure then we call it a graph, and its elements
vertices. If for some vertices u, v ∈ G we have G |= uEv then we say that there
is an edge connecting u and v. If G |= ∀x∀y(x E y ↔ yEx) then we say that
G is an undirected graph. From now on we consider only undirected graphs
and omit the word undirected.

Proposition 3.12. Let G be the class of all finite graphs. G is a Fraïssé class.

Proof. G is of course countable (up to isomorphism) and has the HP (sub-
structure of a graph is also a graph). It has JEP: having two finite graphs
G1, G2 take their disjoint union G1 ⊔ G2 as the extension of them both. G has
the AP. Having graphs A, B, C , where B and C are supergraphs of A, we can
assume without loss of generality that B ∩ C = A. Then A⊔ (B \ A) ⊔ (C \ A)
is the graph we are looking for (with edges as in B and C and without any
edges between B \ A and C \ A). □

Definition 3.13. The random graph is the Fraïssé limit of the class of finite
graphs G denoted by Γ = Flim(G ).

The concept of the random graph emerges independently in many fields
of mathematics. For example, one can construct the graph by choosing at
random for each pair of vertices if they should be connected or not. It turns
out that the graph constructed this way is isomorphic to the random graph
with probability 1.

The random graph Γ has one particular property that is unique to the
random graph.

Fact 3.14 (Random graph property). For each finite disjoint X , Y ⊆ Γ there
exists v ∈ Γ \ (X ∪ Y ) such that ∀u ∈ X we have that Γ |= vEu and ∀u ∈ Y we
have that Γ |= ¬vEu.

Proof. Take any finite disjoint X , Y ⊆ Γ. Let GX Y be the subgraph of Γ induced
by the X ∪ Y . Let H = GX Y ∪ {w}, where w is a new vertex that does not
appear in GX Y . Also, w is connected to all vertices of GX Y that come from X
and to none of those that come from Y . This graph is of course finite, so it is
embeddable in Γ by some h: H → Γ. Let f be the partial isomorphism from
X ⊔ Y to h[H] ⊆ Γ, with X and Y projected to the part of h[H] that come
from X and Y respectively. By the ultrahomogeneity of Γ this isomorphism
extends to an automorphism σ ∈ Aut(Γ). Then v = σ−1(w) is the vertex we
sought. □

Fact 3.15. If a countable graph G has the random graph property, then it is
isomorphic to the random graph Γ.
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Proof. Enumerate vertices of both graphs: Γ = {a1, a2 . . .} and G = {b1, b2 . . .}.
We will construct a chain of partial isomorphisms fn : Γ → G such that ; =
f0 ⊆ f1 ⊆ f2 ⊆ . . . and an ∈ Dom( fn) and bn ∈ Rng( fn) for each n ∈ N.
Suppose we have fn. We seek b ∈ G such that fn ∪ {〈an+1, b〉} is a partial

isomorphism. If an+1 ∈ Dom fn, then simply b = fn(an+1). Otherwise, let
X = {a ∈ Dom fn | aEΓan+1}, Y = Dom fn \ X , i.e. X are vertices of Dom fn that
are connected with an+1 in Γ and Y are those vertices that are not connected
with an+1. Let b be a vertex of G that is connected to all vertices of fn[X ] and
to none fn[Y ] (it exists by the random graph property). Then fn ∪{〈an+1, b〉}
is a partial isomorphism. We find a for the bn+1 in the similar manner, so that
fn+1 = fn ∪ {〈an+1, b〉, 〈a, bn+1〉} is a partial isomorphism.
Finally, f =
⋃∞

n=0 fn is an isomorphism between Γ and G. Take any a, b ∈
Γ. Then for some big enough n we have that aEΓ b ⇔ fn(a)EG fn(b) ⇔
f (a)EG f (b). □

Using this fact one can show that the graph constructed in the probabilistic
manner is in fact isomorphic to the random graph Γ.

Definition 3.16. We say that a Fraïssé class C has the weak Hrushovski prop-
erty (WHP) if for every A ∈ C and an isomorphism of its finitely generated
substructures p : A → A (also called a partial automorphism of A), there is
some B ∈ C such that p can be extended to an automorphism of B, i.e. there
is an embedding i : A→ B and a p̄ ∈ Aut(B) such that the following diagram
commutes:

B B

A A

p̄

i
p

i

Proposition 3.17. The class of finite graphs G has the weak Hrushovski prop-
erty.

The proof of this proposition can be done directly, in a combinatorial man-
ner, as shown in [8]. Hrushovski has also shown in [2] that finite graphs have
stronger property, where each graph can be extended to a supergraph so that
every partial automorphism of the graph extend to an automorphism of the
supergraph.

Moreover, there is a theorem saying that every Fraïssé class C , in a rela-
tional language L, with free amalgamation (see the definition 3.18 below) has
WHP. The statement and proof of this theorem can be found in [9, theorem
3.2.8]. We provide the definition of free amalgamation that is coherent with
the notions established in our paper.

Definition 3.18. Let L be a relational language and C a class of L-structures.
C has free amalgamation if for every A, B, C ∈ C such that C = A∩ B the
following diagram commutes:
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A⊔C B

A B

C

and A⊔C B ∈ C . A⊔C B here is an L-structure with domain A∪B such that for
every n-ary symbol R from L, n-tuple ā ⊆ A∪ B, we have that A⊔C B |= R(ā) if
and only if [ā ⊆ A and A |= R(ā)] or [ā ⊆ B and B |= R(ā)].

Actually we did already implicitly work with free amalgamation in the
Proposition 3.12, showing that the class of finite graphs is indeed a Fraïssé
class.

3.3. Canonical amalgamation. Recall, Cospan(C ), Pushout(C ) are the cat-
egories of cospan and pushout diagrams of the category C . We have also
denoted the notion of cospans and pushouts with a fixed base structure C
denoted as CospanC(C ) and PushoutC(C ).

Definition 3.19. Let C be a class of finitely generated L-structures. We say
that C has canonical amalgamation if for every C ∈ C there is a functor
⊗C : CospanC(C )→ PushoutC(C ) with following properties:

• Let A ← C → B be a cospan. Then ⊗C sends it to a pushout that
preserves “the bottom” structures and embeddings, i.e.:

A⊗C B

A B A B

C C

A⊗C B

We have deliberately omitted names for embeddings of C . Of
course, the functor has to take them into account, but this abuse
of notation is convenient and should not lead into confusion.
• Let A← C → B, A′← C → B′ be cospans with a natural transformation

η given by α : A→ A′,β : B → B′,γ : C → C . Then ⊗C preserves the
morphisms of η when sending it to the natural transformation of
pushouts by adding the δ : A⊗C B→ A′ ⊗C B′ morphism:
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A′ ⊗C B′

A′ B′

A⊗C B

C

A B

C

δ

α β

γ

Remark 3.20. Free amalgamation is canonical.
From now on in the paper, when A is an L-structure and α is an automor-

phism of A, then by (A,α) we mean the structure A expanded by the unary
function corresponding to α, and A constantly denotes the L-structure.
Theorem 3.21. Let C be a Fraïssé class of L-structures with canonical amal-
gamation. Then the class D of L-structures with automorphism is a Fraïssé
class.
Proof. D is obviously countable and has HP. It suffices to show that it
has AP (JEP follows by taking C to be the empty structure). Take any
(A,α), (B,β), (C ,γ) ∈ D such that (C ,γ) embeds into (A,α) and (B,β). Then
α,β,γ yield an automorphism η (as a natural transformation, see 2.20) of a
cospan:

A B

A C B

C

α β

γ

Then, by the Fact 2.18, ⊗C(η) is an automorphism of the pushout diagram
that looks exactly like the diagram in the second point of the Definition 3.19.
This means that the morphism δ : A⊗C B→ A⊗C B has to be automorphism.
Thus, by the fact that the diagram commutes, we have the amalgamation of
(A,α) and (B,β) over (C ,γ) in D. □

The following theorem is one of the most important in construction of the
generic automorphism given in the next section. Together with canonical
amalgamation it gives a general fact about Fraïssé classes, namely it says that
expanding a Fraïssé class with an automorphism of the structures does not
change the limit.
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Theorem 3.22. Let C be a Fraïssé class of finitely generated L-structures. Let
D be the class of structures from C with additional unary function symbol
interpreted as an automorphism of the structure. If C has the weak Hrushovski
property and D is a Fraïssé class then the Fraïssé limit of C is isomorphic to the
Fraïssé limit of D reduced to the language L.
Proof. Let Γ = Flim(C ) and (Π,σ) = Flim(D). By the Fraïssé Theorem 3.9 it
suffices to show that the age ofΠ isC and that it is weakly ultrahomogeneous.
The former comes easily, as for every structure A∈ C we have the structure
(A, idA) ∈ D, which means that the structure A embeds into Π. On the other
hand, if a structure (B,β) ∈ D embeds into (Π,σ), then obviously B ∈ C by
the definition of D. Hence, C is indeed the age of Π.

Now, to show that Π is weakly ultrahomogeneous, take any structures
A, B ∈ C such that A ⊆ B with a fixed embedding of A into Π. Without the
loss of generality assume that A= B ∩Π (i.e. A embeds into Π by inclusion).
Let Ā⊆Π be the smallest substructure closed under the automorphism σ and
containing A. It is finitely generated as an L-structure, as C is the age of Π.
Let C be a finitely generated structure such that Ā→ C ← B. Such structure
exists by the JEP of C . Again, we may assume without the loss of generality
that Ā⊆ C . Then σ ↾Ā is a partial automorphism of C , hence by the WHP it
can be extended to a structure (C̄ ,γ) ∈ D such that γ ↾Ā= σ ↾Ā.

Then, by the weak ultrahomogeneity of (Π,σ) we can find an embedding
g of (C̄ ,γ) such that the following diagram commutes:

(Ā,σ ↾Ā) (Π,σ)

(C̄ ,γ)

⊆

⊆

g

Thus, we have that the following diagram commutes:

A Ā Π

B C C̄

⊆

⊆

⊆

⊆
f ⊆

g

which proves that Π is indeed a weakly ultrahomogeneous structure.
Hence, it is isomorphic to Γ. □

Corollary 3.23. Let C be a Fraïssé class of finitely generated L-structures with
WHP and canonical amalgamation. Let D be the class consisting of structures
from C with an additional automorphism. Let Γ = Flim(C ) and (Π,σ) =
Flim(D). Then Γ ∼=Π.
Proof. It follows from Theorems 3.21 and 3.22. □

4. Conjugacy classes in automorphism groups

Let M be a countable L-structure. Recall, we define a topology on the
G = Aut(M): for any finite function f : M → M we have a basic open set
[ f ]G = {g ∈ G | f ⊆ g}.
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4.1. Prototype: pure set. In this section, M = (M ,=) is an infinite countable
set (with no structure beyond equality).

Remark 4.1. If f1, f2 ∈ Aut(M), then f1 and f2 are conjugate if and only if for
each n ∈ N∪ {ℵ0}, f1 and f2 have the same number of orbits of size n.

Proof. It is easy to see. □

Theorem 4.2. Let σ ∈ Aut(M) be an automorphism with no infinite orbit and
with infinitely many orbits of size n for every n > 0. Then the conjugacy class
of σ is comeagre in Aut(M).

Proof. We will show that the conjugacy class of σ is an intersection of count-
ably many comeagre sets.

Let An = {α ∈ Aut(M) | α has infinitely many orbits of size n}. This set is
comeagre for every n> 0. Indeed, we can represent this set as an intersection
of countable family of open dense sets. Let Bn,k be the set of all finite functions
β : M → M that consist of exactly k distinct n-cycles. Then:

An = {α ∈ Aut(M) | α has infinitely many orbits of size n}

=
∞
⋂

k=1

{α ∈ Aut(M) | α has at least k orbits of size n}

=
∞
⋂

k=1

⋃

β∈Bn,k

[β]Aut(M),

where indeed,
⋃

β∈Bn,k
[β]Aut(M) is dense in Aut(M): take any finite γ : M → M

such that [γ]Aut(M) is nonempty. Then also
⋃

β∈Bn,k
[β]Aut(M) ∩ [γ]Aut(M) ̸= ;,

one can easily construct a permutation that extends γ and has at least k many
n-cycles.

Now we see that A=
⋂∞

n=1 An is a comeagre set consisting of all functions
that have infinitely many n-cycles for each n. The only thing left to show is
that the set of functions with no infinite cycle is also comeagre. Indeed, for
m ∈ M let Bm = {α ∈ Aut(M) | m has finite orbit in α}. This is an open dense
set. It is a union over basic open sets generated by finite permutations with
m in their domain. Denseness is also easy to see.

Finally, by the Remark 4.1, we can say that

σAut(M) =
∞
⋂

n=1

An ∩
⋂

m∈M
Bm,

which concludes the proof. □

4.2. More general structures.

Fact 4.3. Suppose M is an arbitrary structure and f1, f2 ∈ Aut(M). Then f1 and
f2 are conjugate if and only if (M , f1)∼= (M , f2) as structures with one additional
unary function that is an automorphism.

Proof. Suppose that f1 = g−1 f2 g for some g ∈ Aut(M). Then g is the isomor-
phism between (M , f1) and (M , f2). On the other hand if g : (M , f1)→ (M , f2)
is an isomorphism, then g ◦ f1 = f2 ◦ g which exactly means that f1, f2 conju-
gate. □
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Theorem 4.4. Let C be a Fraïssé class of finitely generated L-structures. Let
D be the class of structures from C with additional unary function symbol
interpreted as an automorphism of the structure. If C has the weak Hrushovski
property, D is a Fraïssé class and (Π,σ) = Flim(D), then Aut(C ) has a comeagre
conjugacy class and σ is in this class (i.e. σ is a generic automorphism).

Before we get to the proof, it is important to mention that an isomorphism
between two finitely generated structures is uniquely given by a map from
generators of one structure to the other. This allow us to treat a finite function
as an isomorphism of finitely generated structures (if it yields one) and vice
versa.

Proof. Let Γ = Flim(C ) and (Π,σ) = Flim(D). First, by the Theorem 3.22, we
may assume without the loss of generality that Π = Γ. Let G = Aut(Γ), i.e. G
is the automorphism group of Γ. We will construct a winning strategy for the
second player in the Banach-Mazur game (see 2.7) on the topological space
G with A being σ ’s conjugacy class. By the Banach-Mazur theorem (see 2.13)
this will prove that this class is comeagre.

Recall, G has a basis consisting of sets {g ∈ G | g ↾A= g0 ↾A} for some
finite set A ⊆ Γ and some automorphism g0 ∈ G. In other words, a basic
open set is a set of all extensions of some partial automorphism g0 of finitely
generated substructures of Γ. By Bg ⊆ G we denote a basic open subset given
by a partial isomorphism g. Again, Note that Bg is nonempty because of
ultrahomogeneity of Γ.

With the use of Corollary 2.17 we can consider only games where both play-
ers choose partial isomorphisms. Namely, player I picks functions f0, f1, . . .
and player II chooses g0, g1, . . . such that f0 ⊆ g0 ⊆ f1 ⊆ g1 ⊆ . . ., which
identify the corresponding basic open subsets B f0 ⊇ Bg0

⊇ . . ..
Our goal is to choose gi in such a manner that

⋂∞
i=0 Bgi

= {g} and (Γ, g) is
ultrahomogeneous with age D. By the Fraïssé theorem (see 3.9) it will follow
that (Γ,σ)∼= (Γ, g), thus by the Fact 4.3 we have that σ and g conjugate.

Fix a bijection γ : N×N→ N such that for any n, m ∈ Nwe have γ(n, m)≥ n.
This bijection naturally induces a well ordering onN×N. This will prove useful
later, as the main ingredient of the proof will be a bookkeeping argument.

For technical reasons, let g−1 = ; and X−1 = ;. Enumerate the elements
of the Fraïssé limit Γ = {v0, v1, . . .}. Suppose that player I in the n-th move
chooses a partial automorphism fn. We will construct a partial automorphism
gn ⊇ fn together with a finitely generated substructure Γn ⊆ Γ and a set
Xn ⊆ N2 such that the following properties hold:

(i) gn is a partial automorphism of Γ and an automorphism of finitely
generated substructure Γn,

(ii) gn(vn) and g−1
n (vn) are defined.

Before we give the third point, suppose recursively that gn−1 already satisfy
all those properties. Let us enumerate {〈(An,k,αn,k), (Bn,k,βn,k), fn,k〉}k∈N all
pairs of finitely generated structures with automorphisms such that the first
substructure embed into the second by inclusion, i.e. (An,k,αn,k) ⊆ (Bn,k,βn,k),
and fn,k is an embedding of (An,k,αn,k) in the (Γn−1, gn−1). We allow An,k to
be empty. Although gn−1 is a finite function, we may treat it as a partial
automorphism as we have said before.
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(iii) Let (i, j) =min{({0,1, . . . , n} ×N) \ Xn−1} (with the order induced by
γ). Then Xn = Xn−1∪{(i, j)} and (Bi, j ,βi, j) embeds in (Γn, gn) so that
this diagram commutes:

(Γn, gn)

(Bi, j ,βi, j) (Γn−1, gn−1)

(Ai, j ,αi, j)

f̂i, j ⊆

fi, j⊆

First, we will satisfy the item (iii). Namely, we will construct Γ′n, g ′n such
that gn−1 ⊆ g ′n, Γn−1 ⊆ Γ′n, g ′n gives an automorphism of Γ′n and fi, j extends to
an embedding of (Bi, j ,βi, j) to (Γ′n, g ′n). But this can be easily done by the fact,
that D has the amalgamation property.

It is important to note that g ′n should be a finite function and once again,
as it is an automorphism of a finitely generated structure, we may think
it is simply a map from one generators of Γ′n to the others. By the weak
ultrahomogeneity of Γ, we may assume that Γ′n ⊆ Γ.

Now, by the WHP of C we can extend 〈Γ′n ∪ {vn}〉 together with its partial
isomorphism g ′n to a finitely generated structure Γn together with its auto-
morphism gn ⊇ g ′n and (again by weak ultrahomogeneity) without the loss of
generality we may assume that Γn ⊆ Γ. This way we’ve constructed gn that
has all desired properties.

Now we need to see that g =
⋂∞

n=0 gn is indeed an automorphism of Γ such
that (Γ, g) has the age D and is weakly ultrahomogeneous. It is of course
an automorphism of Γ as it is defined for every v ∈ Γ and is an union of an
increasing chain of automorphisms of finitely generated substructures.

Take any (B,β) ∈ D. Then, there are i, j such that (B,β) = (Bi, j ,βi, j) and
Ai, j = ;. By the bookkeeping there was n such that (i, j) =min{{0, 1, . . . n} ×
N \ Xn}. This means that (B,β) embeds into (Γn, gn), hence it embeds into
(Γ, g). Thus, D is a subclass of the age of (Γ, g). The other inclusion is obvious.
Hence, the age of (Γ, g) is H .

It is also weakly ultrahomogeneous. Having (A,α) ⊆ (B,β), and an embed-
ding f : (A,α)→ (Γ, g), we may find n ∈ N such that (i, j) =min{{0,1, . . . n−
1} × Xn−1} and (A,α) = (Ai, j ,αi, j), (B,β) = (Bi, j ,βi, j) and f = fi, j. This means
that there is a compatible embedding of (B,β) into (Γn, gn), which means we
can also embed it into (Γ, g).

Hence, (Γ, g) ∼= (Γ,σ). By this we know that g and σ are conjugate in
G, thus player II have a winning strategy in the Banach-Mazur game with
A= σG, thus σG is comeagre in G and σ is a generic automorphism. □

Theorem 4.5. Let C be a Fraïssé class of finitely generated L-structures with
WHP and canonical amalgamation. Let D be the class of structures from C
with additional unary function symbol interpreted as an automorphism of the
structure. Then D is a Fraïssé class and for (Π,σ) = Flim(D) we have that the
conjugacy class of σ is comeagre in Aut(C ).

Proof. It follows trivially from Corollary 3.23 and the above Theorem 4.4. □
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Corollary 4.6. Let C be a Fraïssé class of finitely generated L-structures with
WHP and canonical amalgamation. Then Flim(C ) has a generic automorphism.

4.3. Properties of the generic automorphism. The key Theorem 4.5 yields
some corollaries and we present one of them below.

Let C be a Fraïssé class of finitely generated L-structures with weak
Hrushovski property and canonical amalgamation. Let D be the Fraïssé class
(by the Theorem 4.5 of the structures of C with additional automorphism of
the structure). Let Γ = Flim(C ).

Corollary 4.7. Let σ be the generic automorphism of Γ. Then the set of fixed
points of σ is isomorphic to Γ.

Proof. Let S = {x ∈ Γ | σ(x) = x}. It is a substructure of Γ, as it is closed
under operations. For any n-tuple a1, . . . , an ∈ S and n-ary function symbol
f we have that f (a1, . . . an) = f (σ(a1), . . . ,σ(an)) = σ( f (a1, . . . , an), which
exactly says that f (a1, . . . , an) is a fixed point. Also, constant symbols have to
be fixed under σ.

It is obvious that the age of S is C , as every structure from C with identity
embeds into Γ, and hence into S. Also it is weakly ultrahomogeneous. Take
A⊆ B with embedding f : A→ S. It can be thought as embedding of (A, idA)
into (Γ,σ) and thus by its weak ultrahomogeneity we have f̂ : (B, idB)→ (Γ,σ)
and hence f̂ is also and embedding of B into S such that the following diagram
commutes:

A S

B

f

⊆
f̂

□

5. Examples

In this section we give examples and anti-examples of Fraïssé classes with
WHP or CAP.

Example 5.1. The class of all finite graphs G is a Fraïssé class with WHP and
free amalgamation.

We have already shown this fact. Thus get that the random graph has a
generic automorphism.

Example 5.2. A Kn-free graph is a graph with no n-clique as its subgraph.
Let Gn be the class of finite Kn-free graphs. Gn is a Fraïssé class with WHP
and free amalgamation.

Showing that Gn is indeed a Fraïssé class is almost the same as in normal
graphs, together with free amalgamation. WHP is trickier and the proof can
be seen in [7] Theorem 3.6. Hence, Flim(Gn) has a generic automorphism.

Example 5.3. The class V of all finitely generated vector spaces over a count-
able field is a Fraïssé class with WHP and CAP.
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Vector spaces of the same dimension are isomorphic, thus it is obvious that
V is essentially countable. Also HP and J EP are obvious, as we can always
embed space with smaller dimension into the bigger one.

Amalgamation is a little more complex but still comes intuitively. Let A,
B and C be finitely dimensional vector spaces such that C = A∩ B. Thus,
we can write that A = C ⊕ CA and B = C ⊕ CB. Then let D = CA ⊕ C ⊕ CB
with embedding of A and B into CA⊕ C and CB ⊕ C respectively. This is also
canonical amalgamation.

The Fraïssé limit of V is anω-dimensional vector space (which is easy to see
by Theorem 3.9). Hence we can conclude that it has a generic automorphism.

Now we give some anti-examples:

Example 5.4. Let L be the class of all finite linear orderings. Then:

(1) L is a Fraïssé class.
(2) L has canonical amalgamation.
(3) L does not have WHP.

L of course has HP and is essentially countable. JEP is also easy, as having
two finite linear orderings we can just embed the one with fewer elements
into the bigger one.

We will show that L has canonical amalgamation (CAP). Let C be a finite
linear ordered set. We will define ⊗C . Let A, B be finite linear orderings that
C embeds into. We may suppose that C = A∩ B. Then we define an ordering
on D = A∪ B. For d, e ∈ D, let d ≤D e if one of the following hold:

• d, e ∈ A and d ≤A e,
• d, e ∈ B and d ≤B e,
• d ∈ A, e ∈ B and there is c ∈ C such that d ≤A c and c ≤B e,
• d ∈ B, e ∈ A and there is c ∈ C such that d ≤B c and c ≤A e,
• d ∈ A, e ∈ B and for all c ∈ C d ≤A c⇔ e ≤B c

One can imagine that D can be constructed by laying elements of C in a
row and putting elements of A and B appropriately between elements of C
with all elements of A to the left and all elements of B to the right between
two adjacent elements of C . This clearly is a canonical amalgamation.

C

A B

D

Figure 1. Visual representation of the construction.
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On the other handL cannot have WHP. This follows from the fact that that
only automorphism of a finite linear ordering is identity, so we cannot extend
a partial automorphism sending exactly one element to some distinct element.
However, in this case, generic automorphism exists which was shown by Truss
[10].

Definition 5.5. Let X be a set. A ternary relation ≤C⊆ X 3 is a cyclic order,
where we denote (a, b, c) ∈ ≤C as a ≤C

b c (or simply a ≤b c when there’s only
one relation in the context), when it satisfies the following properties:

• If a ≤b c, then b ≤c a.
• If a ≤b c, then not c ≤b a.
• If a ≤b c and a ≤c d, then a ≤b d.
• If a, b, c are pairwise distinct, then either a ≤b c or c ≤b a.

It is easy to visualize a cyclic ordering as a directed (nomen omen) cycle.
For example, a 11-element cyclic order could be drawn like this:

For three elements a, b, c we say that a ≤b c if after ”cutting” the cycle at
b we have a path from a to c. In this particular example we can say that the
green element is red-element-smaller than the blue one.

Example 5.6. The class C of all finite cyclic orders is a Fraïssé class, but does
not have WHP or CAP.

It is not hard to show that C is indeed the Fraïssé class. As usual, the
hardest part is showing AP, which in this case is done analogously to the
linear orders. The Fraïssé limit of C is a countable unit circle.
C hasn’t WHP by the similar argument to this for linear orderings. Imagine

a cycling order of three elements and a partial automorphism with one fixed
point and moving second element to the third. This cannot be extended to
automorphism of any finite cyclic order.

Also, C cannot have CAP. A reason to that is that it do not admit canonical
amalgamation over the empty structure see this by taking 1-element cyclic
order and 3-element cyclic order with automorphism other than identity).

In contrast to linear orderings the Fraïssé limit Σ= FlimC has no generic
automorphism. Consider the set A of automorphisms of Σ with at least one
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finite orbit of size greater than 1. It is open, not dense and closed on conjuga-
tion. Openness follows from the fact that all finite orbits of a given automor-
phism have the same size. Thus A can be represented as a union of basic set
generated by finite cycles of length greater than 1. It is not dense, as it has
empty intersection with basic set generated by identity of a single element. It
is also closed on taking conjugation, as the order of elements does not change
when conjugating. Thus there cannot be a dense conjugacy class in Aut(Σ)
and so there’s no generic automorphism.
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