1. Introduction

2. Preliminaries

2.1. Descriptive set theory.

Definition 2.1. Suppose X is a topological space and $A \subseteq X$. We say that A is *meagre* in X if $A = \bigcup_{n \in \mathbb{N}} A_n$, where A_n are nowhere dense subsets of X (i.e. $Int(\bar{A_n}) = \emptyset$).

Definition 2.2. We say that A is *comeagre* in X if it is a complement of a meagre set. Equivalently, a set is comeagre iff it contains a countable intersection of open dense sets.

Every countable set is meagre in any T_1 space, so, for example, $\mathbb Q$ is meagre in $\mathbb R$ (though being dense), which means that the set of irrationals is comeagre. Another example is...

Definition 2.3. We say that a topological space X is a *Baire space* if every comeagre subset of X is dense in X (equivalently, every meagre set has empty interior).

Definition 2.4. Suppose X is a Baire space. We say that a property P holds generically for a point in $x \in X$ if $\{x \in X \mid P \text{ holds for } x\}$ is comeagre in X.

Definition 2.5. Let X be a nonempty topological space and let $A \subseteq X$. The *Banach-Mazur game of A*, denoted as $G^{\star\star}(A)$ is defined as follows: Players I and II take turns in playing nonempty open sets $U_0, V_0, U_1, V_1, \ldots$ such that $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq \ldots$ We say that player II wins the game if $\bigcap_n V_n \subseteq A$.

There is an important theorem on the Banach-Mazur game: A is comeagre iff II can always choose sets V_0, V_1, \ldots such that it wins. Before we prove it we need to define notions necessary to formalise and prove the theorem.

Definition 2.6. *T* is the tree of all legal positions in the Banach-Mazur game $G^{\star\star}(A)$ when *T* consists of all finite sequences (W_0, W_1, \ldots, W_n) , where W_i are nonempty open sets such that $W_0 \supseteq W_1 \supseteq \ldots \supseteq W_n$. In another words, *T* is a pruned tree on $\{W \subseteq X \mid W \text{ is open nonempty}\}$.

Definition 2.7. We say that σ is a pruned subtree of the tree of all legal positions T if $\sigma \subseteq T$ and for any $(W_0, W_1, \ldots, W_n) \in \sigma, n \ge 0$ there is a W such that $(W_0, W_1, \ldots, W_n, W) \in \sigma$ (it simply means that there's no finite branch in σ).

Definition 2.8. Let σ be a pruned subtree of the tree of all legal positions T. By $[\sigma]$ we denote *the set of all infinite branches of* σ , i.e. infinite sequences (W_0, W_1, \ldots) such that $(W_0, W_1, \ldots W_n) \in \sigma$ for any $n \in \mathbb{N}$.

Definition 2.9. A *strategy* for *II* in $G^{\star\star}(A)$ is a pruned subtree $\sigma \subseteq T$ such that

- (i) σ is nonempty,
- (ii) if $(U_0, V_0, ..., U_n, V_n) \in \sigma$, then for all open nonempty $U_{n+1} \subseteq V_n$, $(U_0, V_0, ..., U_n, V_n, U_{n+1}) \in \sigma$,
- (iii) if $(U_0, V_0, \dots, U_n) \in \sigma$, then for a unique V_n , $(U_0, V_0, \dots, U_n, V_n) \in \sigma$.

Intuitively, a strategy σ works as follows: I starts playing U_0 as any open subset of X, then II plays unique (by (iii)) V_0 such that $(U_0, V_0) \in \sigma$. Then I responds by playing any $U_1 \subseteq V_0$ and II plays unique V_1 such that $(U_0, V_0, U_1, V_1) \in \sigma$, etc.

Definition 2.10. A strategy σ is a winning strategy for II if for any game $(U_0, V_0 ...) \in [\sigma]$ player II wins, i.e. $\bigcap_n V_n \subseteq A$.

Now we can state the key theorem.

Theorem 2.11 (Banach-Mazur, Oxtoby). Let X be a nonempty topological space and let $A \subseteq X$. Then A is comeagre \iff II has a winning strategy in $G^{\star\star}(A)$.

In order to prove it we add an auxilary definition and lemma.

Definition 2.12. Let $S \subseteq \sigma$ be a pruned subtree of tree of all legal positions T and let $p = (U_0, V_0, \ldots, V_n) \in S$. We say that S is *comprehensive for p* if the family $\mathscr{V}_p = \{V_{n+1} \mid (U_0, V_0, \ldots, V_n, U_{n+1}, V_{n+1}) \in S\}$ (it may be that n = -1, which means $p = \emptyset$) is pairwise disjoint and $\bigcup \mathscr{V}_p$ is dense in V_n (where we think that $V_{-1} = X$).

We say that S is *comprehensive* if it is comprehensive for each $p = (U_0, V_0, ..., V_n) \in S$.

Fact 2.13. *If* σ *is a winnig strategy for II then there exists a nonempty comprehensive* $S \subseteq \sigma$.

Proof. We construct *S* recursively as follows:

- (1) $\emptyset \in S$,
- (2) if $(U_0, V_0, ..., U_n) \in S$, then $(U_0, V_0, ..., U_n, V_n) \in S$ for the unique V_n given by the strategy σ ,
- (3) let $p = (U_0, V_0, \dots, V_n) \in S$. For a possible player I's move $U_{n+1} \subseteq V_n$ let U_{n+1}^* be the unique set player II would respond with by σ . Now, by Zorn's Lemma, let \mathscr{U}_p be a maximal collection of nonempty open subsets $U_{n+1} \subseteq V_n$ such that the set $\{U_{n+1}^* \mid U_{n+1} \in \mathscr{U}_p\}$ is pairwise disjoint. Then put in S all $(U_0, V_0, \dots, V_n, U_{n+1})$ such that $U_{n+1} \in \mathscr{U}_p$. This way S is comprehensive for p: the family $\mathscr{V}_p = \{V_{n+1} \mid (U_0, V_0, \dots, V_n, U_{n+1}, V_{n+1}) \in S\}$ is exactly $\{U_{n+1}^* \mid U_{n+1} \in \mathscr{U}_p\}$, which is pairwise disjoint and $\bigcup \mathscr{V}_p$ is obviously dense in V_n by the maximality of \mathscr{U}_p if there was any open set $\tilde{U}_{n+1} \subseteq V_n$ disjoint from $\bigcup \mathscr{V}_p$, then $\tilde{U}_{n+1}^* \subseteq \tilde{U}_{n+1}$ would be also disjoint from $\bigcup \mathscr{V}_p$, so the family $\mathscr{U}_p \cup \{\tilde{U}_{n+1}\}$ would violate the maximality of \mathscr{U}_p .

Lemma 2.14. Let S be a nonempty comprehensive pruned subtree of a strategy σ . Then:

- (i) For any open $V_n \subseteq X$ there is at most one $p = (U_0, V_0, \dots, U_n, V_n) \in S$.
- (ii) Let $S_n = \{V_n \mid (U_0, V_0, ..., V_n) \in S\}$ for $n \in \mathbb{N}$ (i.e. S_n is a family of all possible choices player II can make in its n-th move according to S). Then $\bigcup S_n$ is open and dense in X.
- (iii) S_n is a family of pairwise disjoint sets.

Proof. (i): Suppose that there are some $p = (U_0, V_0, ..., U_n, V_n)$, $p' = (U'_0, V'_0, ..., U'_n, V'_n)$ such that $V_n = V'_n$ and $p \neq p'$. Let k be the smallest index such that those sequences differ. We have two possibilities:

- $U_k = U'_k$ and $V_k \neq V'_k$ this cannot be true simply by the fact that S is a subset of a strategy (so V_k is unique for U_k).
- $U_k \neq U_k'$: by the comprehensiveness of S we know that for $q = (U_0, V_0, \dots, U_{k-1}, V_{k-1})$ the set \mathcal{V}_q is pairwise disjoint. Thus $V_k \cap V_k' = \emptyset$, because $V_k, V_k' \in \mathcal{V}_q$. But this leads to a contradiction V_n cannot be a nonempty subset of both V_k, V_k' .
- (ii): The lemma is proved by induction on n. For n=0 it follows trivially from the definition of comprehensiveness. Now suppose the lemma is true for n. Then the set $\bigcup_{V_n \in S_n} \bigcup \mathscr{V}_{p_{V_n}}$ (where p_{V_n} is given uniquely from (i)) is dense and open in X by the induction hypothesis. But $\bigcup S_{n+1}$ is exactly this set, thus it is dense and open in X.
- (iii): We will prove it by induction on n. Once again, the case n=0 follows from the comprehensiveness of S. Now suppose that the sets in S_n are pairwise disjoint. Take some $x \in V_{n+1} \in S_{n+1}$. Of course $\bigcup S_n \supseteq \bigcup S_{n+1}$, thus by the inductive hypothesis $x \in V_n$ for the unique $V_n \in S_n$. It must be that $V_{n+1} \in \mathcal{V}_{p_{V_n}}$, because V_n is the only superset of V_{n+1} in S_n . But $\mathcal{V}_{p_{V_n}}$ is disjoint, so there is no other $V'_{n+1} \in \mathcal{V}_{p_{V_n}}$ such that $x \in V'_{n+1}$. Moreover, there is no such set in $S_{n+1} \setminus \mathcal{V}_{p_{V_n}}$, because those sets are disjoint from V_n . Hence there is no $V'_{n+1} \in S_{n+1}$ other than V_n such that $x \in V'_{n+1}$. We chosed x and y_{n+1} arbitrarily, so $y_{n+1} \in S_{n+1}$ is pairwise disjoint.

Now we can move to the proof of the Banach-Mazur theorem.

Proof of theorem 2.11. \Rightarrow : Let (A_n) be a sequence of dense open sets with $\bigcap_n A_n \subseteq A$. The simply II plays $V_n = U_n \cap A_n$, which is nonempty by the denseness of A_n .

 \Leftarrow : Suppose II has a winning strategy σ . We will show that A is comeagre. Take a comprehensive $S \subseteq \sigma$. We claim that $\mathscr{S} = \bigcap_n \bigcup S_n \subseteq A$. By the lemma 2.14, (ii) sets $\bigcup S_n$ are open and dense, thus A must be comeagre. Now we prove the claim towards contradiction.

Suppose there is $x \in \mathcal{S} \setminus A$. By the lemma 2.14, (iii) for any n there is unique $x \in V_n \in S_n$. It follows that $p_{V_0} \subset p_{V_1} \subset \ldots$ Now the game $(U_0, V_0, U_1, V_1, \ldots) = \bigcup_n p_{V_n} \in [S] \subseteq [\sigma]$ is not winning for player II, which contradicts the assumption that σ is a winning strategy.

2.2. Fraïssé classes.

Fact 2.15 (Fraïssé theorem). *Then there exists a unique up to isomorphism counable L-structure M such that...*

Definition 2.16. For \mathscr{C} , M as in Fact 2.15, we write $FLim(\mathscr{C}) := M$.

Fact 2.17. If \mathscr{C} is a uniformly locally finite Fraïssé class, then $FLim(\mathscr{C})$ is \aleph_0 -categorical and has quantifier elimination.

- 3. Conjugacy classes in automorphism groups
- 3.1. **Prototype: pure set.** In this section, M = (M, =) is an infinite countable set (with no structure beyond equality).

Proposition 3.1. If $f_1, f_2 \in Aut(M)$, then f_1 and f_2 are conjugate if and only if for each $n \in \mathbb{N} \cup \{\aleph_0\}$, f_1 and f_2 have the same number of orbits of size n.

Proposition 3.2. The conjugacy class of $f \in Aut(M)$ is dense if and only if...

Proposition 3.3. If $f \in Aut(M)$ has an infinite orbit, then the conjugacy class of f is meagre.

Proposition 3.4. An automorphism f of M is generic if and only if...

Proof.

3.2. More general structures.

Proposition 3.5. Suppose M is an arbitrary structure and $f_1, f_2 \in Aut(M)$. Then f_1 and f_2 are conjugate if and only if $(M, f_1) \cong (M, f_2)$.

Definition 3.6. We say that a Fraïssé class $\mathscr C$ has weak Hrushovski property (WHP) if for every $A \in \mathscr C$ and partial automorphism $p: A \to A$, there is some $B \in \mathscr C$ such that p can be extended to an automorphism of B, i.e. there is an embedding $i: A \to B$ and a $\bar p \in \operatorname{Aut}(B)$ such that the following diagram commutes:

$$\begin{array}{ccc}
B & \xrightarrow{\bar{p}} & B \\
\downarrow i & & \downarrow i \\
A & \xrightarrow{p} & A
\end{array}$$

Proposition 3.7. Suppose \mathscr{C} is a Fraïssé class in a relational language with WHP. Then generically, for an $f \in \text{Aut}(\text{FLim}(\mathscr{C}))$, all orbits of f are finite.

Proposition 3.8. Suppose $\mathscr C$ is a Fraïssé class in an arbitrary countable language with WHP. Then generically, for an $f \in \operatorname{Aut}(\operatorname{FLim}(\mathscr C))$...

3.3. Random graph.

Definition 3.9. The random graph is...

Fact 3.10. *The*

Proposition 3.11. *Generically, the set of fixed points of* $f \in Aut(M)$ *is isomorphic to* M *(as a graph).*