
1. Introduction

2. Preliminaries

2.1. Descriptive set theory.

Definition 2.1. Suppose X is a topological space and A ⊆ X . We say that A
is meagre in X if A=

⋃

n∈N An, where An are nowhere dense subsets of X (i.e.
Int(Ān) = ;).

Definition 2.2. We say thatA is comeagre in X if it is a complement of ameager
set. Equivalently, a set is comeagre iff it contains a countable intersection of
open dense sets.

Every countable set is nowhere dense in any T1 space, so, for example, Q
is meager in R (though being dense), which means that the set of irrationals
is comeagre. Another example is...

Definition 2.3. We say that a topological space X is a Baire space if every
comeagre subset of X is dense in X (equivalently, every meagre set has empty
interior).

Definition 2.4. Suppose X is a Baire space. We say that a property P holds
generically for a point in x ∈ X if {x ∈ X | P holds for x} is comeagre in X .

Definition 2.5. Let X be a nonempty topological space and let A ⊆ X . The
Banach-Mazur game of A, denoted as G⋆⋆(A) is defined as follows: Players I
and I I take turns in playing nonempty open sets U0, V0, U1, V1, . . . such that
U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ . . .. We say that player I I wins the game if

⋂

n Vn ⊆ A.

There is an important theorem on the Banach-Mazur game: A is comeagre
iff I I can always choose sets V0, V1, . . . such that it wins. Before we prove it
we need to define notions necessary to formalize this theorem.

Definition 2.6. T is the tree of all legal positions in the Banach-Mazur game
G⋆⋆(A) when T consists of all finite sequences (W0, W1, . . . , Wn), where Wi are
nonempty open sets such that W0 ⊇W1 ⊇ . . . ⊇Wn. In another words, T is a
pruned tree on {W ⊆ X |W is open nonempty}.

By [T] we denote the set of all "infinite branches" of T , i.e. infinite se-
quences (U0, V0, . . .) such that (U0, V0, . . . Un, Vn) ∈ T for any n ∈ N.

Definition 2.7. A strategy for I I in G⋆⋆(A) is a subtree σ ⊆ T such that
(i) σ is nonempty,
(ii) if (U0, V0, . . . , Vn) ∈ σ, then for all open nonempty Un+1 ⊆ Vn,
(U0, V0, . . . , Vn, Un+1) ∈ σ,

(iii) if (U0, V0, . . . , Un) ∈ σ, then for unique Vn, (U0, V0, . . . , Un, Vn) ∈ σ.

Intuitively, the strategy σ works as follows: I starts playing U0 as any
open subset of X , then I I plays unique (by (iii)) V0 such that (U0, V0) ∈ σ.
Then I responds by playing any U1 ⊆ V0 and I I plays uniqe V1 such that
(U0, V0, U1, V1) ∈ σ, etc.

2.2. Fraïssé classes.

Fact 2.8 (Fraïssé theorem). Then there exists a unique up to isomorphism
counable L-structure M such that...
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Definition 2.9. For C , M as in Fact 2.8, we write FLim(C ) := M .

Fact 2.10. If C is a uniformly locally finite Fraïssé class, then FLim(C ) is ℵ0-
categorical and has quantifier elimination.

3. Conjugacy classes in automorphism groups

3.1. Prototype: pure set. In this section, M = (M ,=) is an infinite countable
set (with no structure beyond equality).

Proposition 3.1. If f1, f2 ∈ Aut(M), then f1 and f2 are conjugate if and only if
for each n ∈ N∪ {ℵ0}, f1 and f2 have the same number of orbits of size n.

Proposition 3.2. The conjugacy class of f ∈ Aut(M) is dense if and only if...

Proposition 3.3. If f ∈ Aut(M) has an infinite orbit, then the conjugacy class
of f is meagre.

Proposition 3.4. An automorphism f of M is generic if and only if...

Proof. □

3.2. More general structures.

Proposition 3.5. Suppose M is an arbitrary structure and f1, f2 ∈ Aut(M).
Then f1 and f2 are conjugate if and only if (M , f1)∼= (M , f2).

Definition 3.6. We say that a Fraïssé class C has weak Hrushovski property
(WHP) if for every A∈ C and partial automorphism p : A→ A, there is some
B ∈ C such that p can be extended to an automorphism of B, i.e. there is
an embedding i : A→ B and a p̄ ∈ Aut(B) such that the following diagram
commutes:

B B

A A

p̄

i
p

i

Proposition 3.7. Suppose C is a Fraïssé class in a relational language with
WHP. Then generically, for an f ∈ Aut(FLim(C )), all orbits of f are finite.

Proposition 3.8. Suppose C is a Fraïssé class in an arbitrary countable lan-
guage with WHP. Then generically, for an f ∈ Aut(FLim(C )) ...

3.3. Random graph.

Definition 3.9. The random graph is...

Fact 3.10. The

Proposition 3.11. Generically, the set of fixed points of f ∈ Aut(M) is isomor-
phic to M (as a graph).
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