1. INTRODUCTION

2. Preliminaries

2.1. Descriptive set theory.

Definition 2.1. Suppose *X* is a topological space and $A \subseteq X$. We say that *A* is *meagre* in *X* if... We say that *A* is *comeagre* in *X* if... .

Definition 2.2. We say that a topological space X is a *Baire space* if every comeagre subset of X is dense in X (equivalently, every meagre set has empty interior).

Definition 2.3. Suppose *X* is a Baire space. We say that a property *P* holds generically for a point in $x \in X$ if $\{x \in X | P \text{ holds for } x\}$ is comeagre in *X*.

Example 2.4. content

2.2. Fraïssé classes.

Fact 2.5 (Fraïssé theorem). Suppose \mathscr{C} is a class of finitely generated *L*-structures such that...

Then there exists a unique up to isomorphism counable L-structure M such that...

Definition 2.6. For \mathscr{C} , *M* as in Fact 2.5, we write $FLim(\mathscr{C}) := M$.

Fact 2.7. If \mathscr{C} is a uniformly locally finite Fra $\ddot{s}s\acute{e}$ class, then $FLim(\mathscr{C})$ is \aleph_0 -categorical and has quantifier elimination.

3. Conjugacy classes in automorphism groups

3.1. **Prototype: pure set.** In this section, M = (M, =) is an infinite countable set (with no structure beyond equality).

Proposition 3.1. If $f_1, f_2 \in Aut(M)$, then f_1 and f_2 are conjugate if and only if for each $n \in \mathbb{N} \cup \{\aleph_0\}$, f_1 and f_2 have the same number of orbits of size n.

Proposition 3.2. The conjugacy class of $f \in Aut(M)$ is dense if and only if...

Proposition 3.3. If $f \in Aut(M)$ has an infinite orbit, then the conjugacy class of f is meagre.

Proposition 3.4. An automorphism f of M is generic if and only if...

Proof.

3.2. More general structures.

Proposition 3.5. Suppose *M* is an arbitrary structure and $f_1, f_2 \in Aut(M)$. Then f_1 and f_2 are conjugate if and only if $(M, f_1) \cong (M, f_2)$.

Definition 3.6. We say that a Fraïssé class \mathscr{C} has *weak Hrushovski property* (*WHP*) if for every $A \in \mathscr{C}$ and partial automorphism $p: A \to A$, there is some $B \in \mathscr{C}$ such that p can be extended to an automorphism of B, i.e. there is an embedding $i: A \to B$ and a $\bar{p} \in \text{Aut}(B)$ such that the following diagram commutes:

Proposition 3.7. Suppose \mathscr{C} is a Fraissé class in a relational language with WHP. Then generically, for an $f \in Aut(FLim(\mathscr{C}))$, all orbits of f are finite.

Proposition 3.8. Suppose \mathscr{C} is a Fraïssé class in an arbitrary countable language with WHP. Then generically, for an $f \in Aut(FLim(\mathscr{C})) \dots$

3.3. Random graph.

Definition 3.9. The random graph is...

Fact 3.10. The

Proposition 3.11. Generically, the set of fixed points of $f \in Aut(M)$ is isomorphic to M (as a graph).