
1. Introduction

2. Preliminaries

2.1. Descriptive set theory.

Definition 2.1. Suppose X is a topological space and A⊆ X . We say that A is
meagre in X if... Wea say that A is comeagre in X if... .

Definition 2.2. We say that a topological space X is a Baire space if every
comeagre subset of X is dense in X (equivalently, every meagre set has empty
interior).

Definition 2.3. Suppose X is a Baire space. We say that a property P holds
generically for a point in x ∈ X if {x ∈ X | P holds for x} is comeagre in X .

Example 2.4. content

2.2. Fraïssé classes.

Fact 2.5 (Fraïssé theorem). Suppose C is a class of finitely generated
L-structures such that...

Then there exists a unique up to isomorphism counable L-structure M such
that...

Definition 2.6. For C , M as in Fact 2.5, we write FLim(C ) := M .

Fact 2.7. If C is a uniformly locally finite Fraïssé class, then FLim(C ) is ℵ0-
categorical and has quantifier elimination.

3. Conjugacy classes in automorphism groups

3.1. Prototype: pure set. In this section, M = (M ,=) is an infinite countable
set (with no structure beyond equality).

Proposition 3.1. If f1, f2 ∈ Aut(M), then f1 and f2 are conjugate if and only if
for each n ∈ N∪ {ℵ0}, f1 and f2 have the same number of orbits of size n.

Proposition 3.2. The conjugacy class of f ∈ Aut(M) is dense if and only if...

Proposition 3.3. If f ∈ Aut(M) has an infinite orbit, then the conjugacy class
of f is meagre.

Proposition 3.4. An automorphism f of M is generic if and only if...

Proof. □

3.2. More general structures.

Proposition 3.5. Suppose M is an arbitrary structure and f1, f2 ∈ Aut(M).
Then f1 and f2 are conjugate if and only if (M , f1)∼= (M , f2).

Definition 3.6. We say that a Fraïssé class C has weak Hrushovski property
(WHP) if for every A∈ C and partial automorphism p : A→ A, there is some
B ∈ C such that p can be extended to an automorphism of B, i.e. there is
an embedding i : A→ B and a p̄ ∈ Aut(B) such that the following diagram
commutes:
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Proposition 3.7. Suppose C is a Fraïssé class in a relational language with
WHP. Then generically, for an f ∈ Aut(FLim(C )), all orbits of f are finite.

Proposition 3.8. Suppose C is a Fraïssé class in an arbitrary countable lan-
guage with WHP. Then generically, for an f ∈ Aut(FLim(C )) ...

3.3. Random graph.

Definition 3.9. The random graph is...

Fact 3.10. The

Proposition 3.11. Generically, the set of fixed points of f ∈ Aut(M) is isomor-
phic to M (as a graph).
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