
1. Introduction

2. Preliminaries

2.1. Descriptive set theory.

Definition 2.1. Suppose X is a topological space and A ⊆ X . We say
that A is meagre in X if A =

⋃

n∈N An, where An are nowhere dense
subsets of X (i.e. Int(Ān) = ;).

Definition 2.2. We say that A is comeagre in X if it is a complement of
a meagre set. Equivalently, a set is comeagre if and only if it contains
a countable intersection of open dense sets.

Every countable set is meagre in any T1 space, so, for example, Q
is meagre in R (although it is dense), which means that the set of
irrationals is comeagre. Another example is...

Definition 2.3. We say that a topological space X is a Baire space if
every comeagre subset of X is dense in X (equivalently, every meagre
set has empty interior).

Definition 2.4. Suppose X is a Baire space. We say that a property P
holds generically for a point x ∈ X if {x ∈ X | P holds for x} is comeagre
in X .

Definition 2.5. Let X be a nonempty topological space and let A ⊆
X . The Banach-Mazur game of A, denoted as G⋆⋆(A) is defined as
follows: Players I and II take turns in playing nonempty open sets
U0, V0, U1, V1, . . . such that U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ . . .. We say that player
II wins the game if

⋂

n Vn ⊆ A.

There is an important theorem on the Banach-Mazur game: A is
comeagre if and only if II can always choose sets V0, V1, . . . such that
it wins. Before we prove it we need to define notions necessary to
formalise and prove the theorem.

Definition 2.6. T is the tree of all legal positions in the Banach-Mazur
game G⋆⋆(A) when T consists of all finite sequences (W0, W1, . . . , Wn),
where Wi are nonempty open sets such that W0 ⊇ W1 ⊇ . . . ⊇ Wn. In
other words, T is a pruned tree on {W ⊆ X |W is open nonempty}.

Definition 2.7. We say that σ is a pruned subtree of the tree of all legal
positions T if σ ⊆ T , for any (W0, W1, . . . , Wn) ∈ σ, n ≥ 0 there is a W
such that (W0, W1, . . . , Wn, W ) ∈ σ (it simply means that there’s no finite
branch in σ) and (W0, W1, . . . Wn−1) ∈ σ (every node on a branch is in
σ).

Definition 2.8. Let σ be a pruned subtree of the tree of all legal posi-
tions T . By [σ]we denote the set of all infinite branches of σ, i.e. infinite
sequences (W0, W1, . . .) such that (W0, W1, . . . Wn) ∈ σ for any n ∈ N.
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Definition 2.9. A strategy for II in G⋆⋆(A) is a pruned subtree σ ⊆ T
such that

(i) σ is nonempty,
(ii) if (U0, V0, . . . , Un, Vn) ∈ σ, then for all open nonempty Un+1 ⊆ Vn,
(U0, V0, . . . , Un, Vn, Un+1) ∈ σ,

(iii) if (U0, V0, . . . , Un) ∈ σ, then for a unique Vn, (U0, V0, . . . , Un, Vn) ∈
σ.

Intuitively, a strategy σ works as follows: I starts playing U0 as any
open subset of X , then II plays unique (by (iii)) V0 such that (U0, V0) ∈ σ.
Then I responds by playing any U1 ⊆ V0 and II plays unique V1 such
that (U0, V0, U1, V1) ∈ σ, etc.
Definition 2.10. A strategy σ is a winning strategy for II if for any game
(U0, V0 . . .) ∈ [σ] player II wins, i.e.

⋂

n Vn ⊆ A.
Now we can state the key theorem.

Theorem 2.11 (Banach-Mazur, Oxtoby). Let X be a nonempty topolog-
ical space and let A⊆ X . Then A is comeagre⇔ II has a winning strategy
in G⋆⋆(A).
In order to prove it we add an auxiliary definition and lemma.

Definition 2.12. Let S ⊆ σ be a pruned subtree of tree of all legal posi-
tions T and let p = (U0, V0, . . . , Vn) ∈ S. We say that S is comprehensive
for p if the family Vp = {Vn+1 | (U0, V0, . . . , Vn, Un+1, Vn+1) ∈ S} (it may be
that n= −1, which means p = ;) is pairwise disjoint and

⋃

Vp is dense
in Vn (where we think that V−1 = X ). We say that S is comprehensive if
it is comprehensive for each p = (U0, V0, . . . , Vn) ∈ S.
Fact 2.13. If σ is a winning strategy for II then there exists a nonempty
comprehensive S ⊆ σ.
Proof. We construct S recursively as follows:

(1) ; ∈ S,
(2) if (U0, V0, . . . , Un) ∈ S, then (U0, V0, . . . , Un, Vn) ∈ S for the unique

Vn given by the strategy σ,
(3) let p = (U0, V0, . . . , Vn) ∈ S. For a possible player I ’s move

Un+1 ⊆ Vn let U⋆n+1 be the unique set player II would re-
spond with by σ. Now, by Zorn’s Lemma, let Up be a
maximal collection of nonempty open subsets Un+1 ⊆ Vn
such that the set {U⋆n+1 | Un+1 ∈ Up} is pairwise disjoint.
Then put in S all (U0, V0, . . . , Vn, Un+1) such that Un+1 ∈ Up.
This way S is comprehensive for p: the family Vp = {Vn+1 |
(U0, V0, . . . , Vn, Un+1, Vn+1) ∈ S} is exactly {U⋆n+1 | Un+1 ∈ Up},
which is pairwise disjoint and

⋃

Vp is obviously dense in Vn by
the maximality of Up – if there was any open set Ũn+1 ⊆ Vn dis-
joint from
⋃

Vp, then Ũ⋆n+1 ⊆ Ũn+1 would be also disjoint from
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⋃

Vp, so the family Up ∪ {Ũn+1} would violate the maximality
of Up. □

Lemma 2.14. Let S be a nonempty comprehensive pruned subtree of a
strategy σ. Then:

(i) For any open Vn ⊆ X there is at most one p = (U0, V0, . . . , Un, Vn) ∈
S.

(ii) Let Sn = {Vn | (U0, V0, . . . , Vn) ∈ S} for n ∈ N (i.e. Sn is a family of
all possible choices player II can make in its n-th move according
to S). Then
⋃

Sn is open and dense in X .
(iii) Sn is a family of pairwise disjoint sets.

Proof. (i): Suppose that there are some p = (U0, V0, . . . , Un, Vn), p′ =
(U ′0, V ′0 , . . . , U ′n, V ′n) such that Vn = V ′n and p ̸= p′. Let k be the smallest
index such that those sequences differ. We have two possibilities:

• Uk = U ′k and Vk ̸= V ′k – this cannot be true simply by the fact
that S is a subset of a strategy (so Vk is unique for Uk).
• Uk ̸= U ′k: by the comprehensiveness of S we know that for

q = (U0, V0, . . . , Uk−1, Vk−1) the set Vq is pairwise disjoint. Thus
Vk∩V ′k = ;, because Vk, V ′k ∈ Vq. But this leads to a contradiction
– Vn cannot be a nonempty subset of both Vk, V ′k .

(ii): The lemma is proved by induction on n. For n = 0 it follows
trivially from the definition of comprehensiveness. Now suppose the
lemma is true for n. Then the set

⋃

Vn∈Sn

⋃

VpVn
(where pVn

is given
uniquely from (i)) is dense and open in X by the induction hypothesis.
But
⋃

Sn+1 is exactly this set, thus it is dense and open in X .
(iii): We will prove it by induction on n. Once again, the case n= 0

follows from the comprehensiveness of S. Now suppose that the sets
in Sn are pairwise disjoint. Take some x ∈ Vn+1 ∈ Sn+1. Of course
⋃

Sn ⊇
⋃

Sn+1, thus by the inductive hypothesis x ∈ Vn for the unique
Vn ∈ Sn. It must be that Vn+1 ∈ VpVn

, because Vn is the only superset
of Vn+1 in Sn. But VpVn

is disjoint, so there is no other V ′n+1 ∈ VpVn
such

that x ∈ V ′n+1. Moreover, there is no such set in Sn+1 \ VpVn
, because

those sets are disjoint from Vn. Hence there is no V ′n+1 ∈ Sn+1 other
than Vn such that x ∈ V ′n+1. We’ve chosen x and Vn+1 arbitrarily, so Sn+1
is pairwise disjoint. □

Now we can move to the proof of the Banach-Mazur theorem.

Proof of theorem 2.11. ⇒: Let (An) be a sequence of dense open sets
with
⋂

n An ⊆ A. The simply II plays Vn = Un ∩ An, which is nonempty
by the denseness of An.
⇐: Suppose II has a winning strategy σ. We will show that A is

comeagre. Take a comprehensive S ⊆ σ. We claim that S =
⋂

n

⋃

Sn ⊆
A. By the lemma 2.14, (ii) sets

⋃

Sn are open and dense, thus A must
be comeagre. Now we prove the claim towards contradiction.
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Suppose there is x ∈ S \A. By the lemma 2.14, (iii) for any n there
is unique x ∈ Vn ∈ Sn. It follows that pV0

⊂ pV1
⊂ . . .. Now the game

(U0, V0, U1, V1, . . .) =
⋃

n pVn
∈ [S] ⊆ [σ] is not winning for player II,

which contradicts the assumption that σ is a winning strategy. □

Corollary 2.15. If we add a constraint to the Banach-Mazur game such
that players can only choose basic open sets, then the theorem 2.11 still
suffices.

Proof. If one adds the word basic before each occurrence of word open
in previous proofs and theorems then they all will still be valid (except
for⇒, but its an easy fix – take Vn a basic open subset of Un ∩An). □

This corollary will be important in using the theorem in practice –
it’s much easier to work with basic open sets rather than any open sets.

2.2. Category theory. In this section we will give a short introduction
to the notions of category theory that will be necessary to generalize
the key result of the paper.

Wewill use a standard notation. If the reader is interested in detailed
introduction to the category theory, then it’s recommended to take a
look at [2]. Here we will shortly describe the standard notation.

A category C consists of the collection of objects (denoted as Obj(C ),
but most often simply as C ) and collection of morphisms Mor(A, B)
between each pair of objects A, B ∈ C . We require that for each mor-
phisms f : B→ C , g : A→ B there is a morphism f ◦g : A→ C . For every
A ∈ C there is an identity morphism idA such that for any morphism
f ∈Mor(A, B) it follows that f ◦ idA = idB ◦ f .
We say that f : A→ B is isomorphism if there is (necessarily unique)

morphism g : B→ A such that g◦ f = idA and f ◦g = idB. Automorphism
is an isomorphism where A= B.

A functor is a “homeomorphism“ of categories. We say that F : C →
D is a functor from categoryC to categoryD if it associates each object
A∈ C with an object F(A) ∈ D, associates each morphism f : A→ B in
C with a morphism F( f ): F(A)→ F(B). We also require that F(idA) =
idF(A) and that for any (compatible) morphisms f , g in C F( f ◦ g) =
F( f ) ◦ F(g).
In category theory we distinguish covariant and contravariant func-

tors. Here, we only consider covariant functors, so we will simply say
functor.

Fact 2.16. Functor F : C →D maps isomorphism f : A→ B in C to the
isomorphism F( f ): F(A)→ F(B) in D.

Notion that will be very important for us is a “morphism of functors“
which is called natural transformation.

Definition 2.17. Let F, G be functors between the categories C ,D. A
natural transformation τ is function that assigns to each object A ofC a
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morphism τA in Mor(F(A), G(A)) such that for every morphism f : A→ B
in C the following diagram commutes:

A F(A) G(A)

B F(B) G(B)

f

τA

F( f ) G( f )

τB

Definition 2.18. In category theory, a diagram of type J in category
C is a functor D : J →C . J is called the index category of D. In other
words, D is of shape J .

For example, J = {−1 ← 0 → 1}, then a diagram D : J → C
is called a cospan. For example, if A, B, C are objects of C and f ∈
Mor(C , A), g ∈Mor(C , B), then the following diagram is a cospan:

A B

C
gf

From now we omit explicit definition of the index category, as it is
easily referable from a picture.
Definition 2.19. Let A, B, C , D be objects in the category C with mor-
phisms e : C → A, f : C → B, g : A→ D, h: B→ D such that g ◦ e = h ◦ f .
Then the following diagram:

D

A B

C

g h

ef

is called a pushout diagram
Definition 2.20. The cospan category of category C , refered to as
Cospan(C ), is the category of cospan diagrams ofC , where morphisms
between two cospans are normal transformations of the underlying
functors.

We define pushout category analogously and call it Pushout(C ).
TODO: dodać tu przykład?

3. Fraïssé classes

In this section we will take a closer look at classes of finitely gen-
erated structures with some characteristic properties. More specifi-
cally, we will describe a concept developed by a French mathematician
Roland Fraïssé called Fraïssé limit.
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3.1. Definitions.
Definition 3.1. Let L be a signature and M be an L-structure. The
age of M is the classK of all finitely generated structures that embeds
into M . The age of M is also associated with class of all structures
embeddable in M up to isomorphism.
Definition 3.2. We say that M has countable age when its age has
countably many isomorphism types of finitely generated structures.
Definition 3.3. Let K be a class of finitely generated structures. K
has hereditary property (HP) if for any A ∈ K , any finitely generated
substructure B of A it holds that B ∈K .
Definition 3.4. Let K be a class of finitely generated structures. We
say thatK has joint embedding property (JEP) if for any A, B ∈K there
is a structure C ∈K such that both A and B embed in C .

C

A B

f g

In terms of category theory, this is a span in category K .
Fraïssé has shown fundamental theories regarding age of a structure,

one of them being the following one:
Fact 3.5. Suppose L is a signature and K is a nonempty finite or count-
able set of finitely generated L-structures. Then K has the HP and JEP
if and only if K is the age of some finite or countable structure.

Beside the HP and JEP Fraïssé has distinguished one more property
of the class K , namely amalgamation property.
Definition 3.6. LetK be a class of finitely generated L-structures. We
say that K has the amalgamation property (AP) if for any A, B, C ∈K
and embeddings e : C → A, f : C → B there exists D ∈K together with
embeddings g : A→ D and h: A→ D such that g ◦ e = h ◦ f .

D

A B

C

g h

fe

In terms of category theory, amalgamation over some structure C is
a pushout diagram.
Definition 3.7. Let M be an L-structure. M is ultrahomogeneous if
every isomorphism between finitely generated substructures of M ex-
tends to an automorphism of M .
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Having those definitions we can provide the main Fraïssé theorem.

Theorem 3.8 (Fraïssé theorem). Let L be a countable language and let
K be a nonempty countable set of finitely generated L-structures which
has HP, JEP and AP. ThenK is the age of a countable, ultrahomogeneous
L-structure M . Moreover, M is unique up to isomorphism. We say that
M is a Fraïssé limit of K and denote this by M = Flim(K ).

This is a well known theorem. One can read a proof of this theorem
in Wilfrid Hodges’ classical book Model Theory [1]. In the proof of this
theorem appears another, equally important 3.10.

Definition 3.9. We say that an L-structure M is weakly ultrahomoge-
neous if for any A, B finitely generated substructures of M such that
A⊆ B and an embedding f : A→ M there is an embedding g : B→ M
which extends f .

A D

B

⊆

f

g

Lemma 3.10. A countable structure is ultrahomogeneous if and only if
it is weakly ultrahomogeneous.

This lemmawill play amajor role in the later parts of the paper. Weak
ultrahomogeneity is an easier and more intuitive property and it will
prove useful when recursively constructing the generic automorphism
of a Fraïssé limit.

3.2. Random graph. In this section we’ll take a closer look on a class
of finite unordered graphs, which is a Fraïssé class.

The language of unordered graphs L consists of a single binary rela-
tional symbol E. If G is an L-structure then we call it a graph, and its
elements vertices. If for some vertices u, v ∈ G we have G |= uEv then
we say that there is an edge connecting u and v. If G |= ∀x∀y(x E y↔
yEx) then we say that G is an unordered graph. From now on we omit
the word unordered and graphs as unordered.

Proposition 3.11. Let G be the class of all finite graphs. G is a Fraïssé
class.

Proof. G is of course countable (up to isomorphism) and has the HP
(graph substructure is also a graph). It has JEP: having two finite
graphs G1, G2 take their disjoint union G1 ⊔ G2 as the extension of
them both. G has the AP. Having graphs A, B, C , where B and C
are supergraphs of A, we can assume without loss of generality, that
(B \A)∩ (C \A) = ;. Then A⊔ (B \A)⊔ (C \A) is the graph we’re looking
for (with edges as in B and C and without any edges between B \ A
and C \ A). □
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Definition 3.12. The random graph is the Fraïssé limit of the class of
finite graphs G denoted by Γ = Flim(G ).
The concept of the random graph emerges independently in many

fields of mathematics. For example, one can construct the graph by
choosing at random for each pair of vertices if they should be connected
or not. It turns out that the graph constructed this way is isomorphic
to the random graph with probability 1.
The random graph Γ has one particular property that is unique to

the random graph.
Fact 3.13 (random graph property). For each finite disjoint X , Y ⊆ Γ
there exists v ∈ Γ \ (X ∪ Y ) such that ∀u ∈ X (vEu) and ∀u ∈ Y (¬vEu).
Proof. Take any finite disjoint X , Y ⊆ Γ. Let GX Y be the subgraph of Γ
induced by the X ∪Y . Let H = GX Y ∪{w}, where w is a new vertex that
does not appear in GX Y . Also, w is connected to all vertices of GX Y that
come from X and to none of those that come from Y . This graph is
of course finite, so it is embeddable in Γ. Without loss of generality
assume that this embedding is simply inclusion. Let f be the partial
isomorphism from X ⊔ Y to H, with X and Y projected to the part of
H that come from X and Y respectively. By the ultrahomogeneity of
Γ this isomorphism extends to an automorphism σ ∈ Aut(Γ). Then
v = σ−1(w) is the vertex we sought. □

Fact 3.14. If a countable graph G has the random graph property, then
it is isomorphic to the random graph Γ.
Proof. Enumerate vertices of both graphs: Γ = {a1, a2 . . .} and G =
{b1, b2 . . .}. Wewill construct a chain of partial isomorphisms fn : Γ→ G
such that ;= f0 ⊆ f1 ⊆ f2 ⊆ . . . and an ∈ dom( fn) and bn ∈ rng( fn).
Suppose we have fn. We seek b ∈ G such that fn ∪ {〈an+1, b〉} is

a partial isomorphism. If an+1 ∈ dom fn, then simply b = fn(an+1).
Otherwise, let X = {a ∈ Γ | aEΓan+1} ∩ dom fn, Y = X c ∩ dom fn, i.e.
X are vertices of dom fn that are connected with an+1 in Γ and Y are
those vertices that are not connected with an+1. Let b be a vertex
of G that is connected to all vertices of fn[X ] and to none fn[Y ] (it
exists by the random graph property). Then fn∪{〈an+1, b〉} is a partial
isomorphism. We find a for the bn+1 in the similar manner, so that
fn+1 = fn ∪ {〈an+1, b〉, 〈a, bn+1〉} is a partial isomorphism.
Finally, f =
⋃∞

n=0 fn is an isomorphism between Γ and G. Take
any a, b ∈ Γ. Then for some big enough n we have that aEΓ b ⇔
fn(a)EG fn(b)⇔ f (a)EG f (b). □

Using this fact one can show that the graph constructed in the prob-
abilistic manner is in fact isomorphic to the random graph Γ.
Definition 3.15. We say that a Fraïssé class K has weak Hrushovski
property (WHP) if for every A∈K and an isomorphism of its substruc-
tures p : A→ A (also called a partial automorphism of A), there is some
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B ∈K such that p can be extended to an automorphism of B, i.e. there
is an embedding i : A→ B and a p̄ ∈ Aut(B) such that the following
diagram commutes:

B B

A A

p̄

i

p

i

Proposition 3.16. The class of finite graphs G has the weak Hrushovski
property.

Proof. It may be there some day, but it may not! □

3.3. Canonical amalgamation.

Definition 3.17. Let K be a class finitely generated L-structures. We
say that K has canonical amalgamation if for every C ∈ K there is a
functor ⊗C : Cospan(K )→ Pushout(K ) such that it has the following
properties:

• Let A← C → B be a cospan. Then ⊗C sends it to a pushout
that preserves “the bottom“ structures and embeddings, i.e.:

A⊗C B

A B A B

C C

A⊗C B

We have deliberately omited names for embeddings of C .
Of course, the functor has to take them into account, but this
abuse of notation is convenient and should not lead into con-
fusion.
• Let A← C → B, A′ ← C → B′ be cospans with a natural trans-
formation given by α : A→ A′,β : B → B′,γ : C → C . Then ⊗C
preserves the morphisms of when sending the natural transfor-
mation of those cospans to natural transformation of pushouts
by adding the δ : A⊗C B→ A′ ⊗C B′ morphism:
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A′ ⊗C B′

A′ B′

A⊗C B

C

A B

C

δ

α β

γ

Theorem 3.18. Let K be a Fraïssé class of L-structures with canonical
amalgamation. Then the class H of L-structures with automorphism is
a Fraïssé class.

Proof. H is obviously countable and has HP. It suffices to show that it
has AP (JEP follows by taking C to be the empty structure). Take any
(A,α), (B,β), (C ,γ) ∈H such that (C ,γ) embeds into (A,α) and (B,β).
Then α,β,γ yield an automorphism η (as a natural transformation) of
a cospan:

A B

A C B

C

α β

γ

Then, by the fact 2.16, ⊗C(η) is an automorphism of the pushout
diagram:
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A⊗C B

A B

C

δ

α β

γ

TODO: ten diagram nie jest do końca taki jak trzeba, trzeba w za-
sadzie skopiować ten z definicji kanonicznej amalgamcji. Czy to nie
będzie wyglądać źle?
This means that the morphism δ : A⊗C B → A⊗C B has to be auto-

morphism. Thus, by the fact that the diagram commutes, we have the
amalgamation of (A,α) and (B,β) over (C ,γ) in H . □

3.4. Graphs with automorphism. The language and theory of un-
ordered graphs is fairly simple. We extend the language by one unary
symbol σ and interpret it as an arbitrary automorphism on the graph
structure. It turns out that the class of such structures is a Fraïssé class.

Proposition 3.19. LetH be the class of all finite graphs with an automor-
phism, i.e. structures in the language (E,σ) such that E is a symmetric
relation and σ is an automorphism on the structure. H is a Fraïssé class.

Proof. Countability and HP are obvious, JEP follows by the same ar-
gument as in plain graphs. We need to show that the class has the
amalgamation property.
Take any (A,α), (B,β), (C ,γ) ∈ H such that A embeds into B and

C . Without the loss of generality we may assume that B ∩ C = A and
α ⊆ β,γ . Let D be the amalgamation of B and C over A as in the proof
for the plain graphs. We will define the automorphism δ ∈ Aut(D) so
it extends β and γ . We let δ ↾B= β,δ ↾C= γ . Let’s check the definition
is correct. We have to show that (uEDv↔ δ(u)EDδ(v)) holds for any
u, v ∈ D. We have two cases:

• u, v ∈ X , where X is either B or C . This case is trivial.
• u ∈ B \ A, v ∈ C \ A. Then δ(u) = β(u) ∈ B \ A, similarly δ(v) =

γ(v) ∈ C \ A. This follows from the fact, that β ↾A= α, so for
any w ∈ A β−1(w) = α−1(w) ∈ A, similarly for γ . Thus, from
the construction of D, ¬uEDv and ¬δ(u)EDδ(v).

□

The proposition says that there is a Fraïssé for the class H of finite
graphs with automorphisms. We shall call it (Π,σ). Not surprisingly,
Π is in fact a random graph.
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Proposition 3.20. The Fraïssé limit of H interpreted as a plain graph
(i.e. as a reduct to the language of graphs) is isomorphic to the random
graph Γ.

Proof. It is enough to show that Π = Flim(H ) has the random graph
property. Take any finite disjoint X , Y ⊆Π. Without the loss of gener-
ality assume that X ∪ Y is σ-invariant, i.e. σ(v) ∈ X ∪ Y for v ∈ X ∪ Y .
This assumption can be made because there are no infinite orbits in σ,
which in turn is due to the fact that H is the age of Π.

Let GX Y be the graph induced by X ∪ Y . Take H = GX Y ⊔ v as a
supergraph of GX Y with one new vertex v connected to all vertices of
X and to none of Y . By the proposition 3.16 we can extend H together
with its partial isomorphism σ ↾X∪Y to a graph R with automorphism
τ. Once again, without the loss of generality we can assume that
R ⊆Π, because H is the age of Π. But R ↾GX Y

together with τ ↾GX Y
are

isomorphic to the GX Y with σ ↾GX Y
.

Thus, by ultrahomogeneity of Π this isomorphism extends to an
automorphism θ of (Π,σ). Then θ(v) is the vertex that is connected to
all vertices of X and none of Y , because θ[R ↾X ] = X ,θ[R ↾Y ] = Y . □

Theorem 3.21. LetC be a Fraïssé class of finite structures in a relational
language L of some theory T . Let D be a class of finite structures of
the theory T in a relational language L with additional unary function
symbol interpreted as an automorphism of the structure. If C has the
weak Hrushovski property and D is a Fraïssé class then the Fraïssé limit
of C is isomorphic to the Fraïssé limit of D reduced to the language L.

Proof. Let Γ = Flim(C ) and (Π,σ) = Flim(D). By the Fraïssé theorem
3.8 it suffices to show that the age of Π is C and that it has the weak
ultrahomogeneity in the class C . The former comes easily, as for every
structure A∈ C we have the structure (A, idA) ∈ D, which means that
the structure A embedds intoΠ. Also, if a structure (B,β) ∈ D embedds
into D, then B ∈ C . Hence, C is indeed the age of Π.
Now, take any structure A, B ∈ C such that A⊆ B. Without the loss

of generality assume that A = B ∩Π. Let Ā be the smallest structure
closed on the automorphism σ and containg A. It is finite, as C is
the age of Π. By the weak Hrushovski property, of C let (B̄,β) be a
structure extending (B∪ Ā,σ ↾Ā). Again, we may assume that B∪ Ā⊆ B̄.
Then, by the fact that Π is a Fraïssé limit of D there is an embedding
f : (B̄,β)→ (Π,σ) such that the following diagram commutes:

(A,;) (Ā,σ ↾A) (Π,σ)

(B,σ ↾B) (B̄,β)

⊆

⊆

⊆

⊆

⊆

f

Then we simply get the following diagram:
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A Π

B

⊆

⊆

f ↾B

which proves that Π is indeed a weakly ultrahomogeneous structure
in C . Hence, it is isomorphic to Γ. □

4. Conjugacy classes in automorphism groups

Let M be a countable L-structure. We define a topology on the
G = Aut(M): for any finite function f : M → M we have a basic open
set [ f ]G = {g ∈ G | f ⊆ g}.

4.1. Prototype: pure set. In this section, M = (M ,=) is an infinite
countable set (with no structure beyond equality).

Proposition 4.1. If f1, f2 ∈ Aut(M), then f1 and f2 are conjugate if and
only if for each n ∈ N∪ {ℵ0}, f1 and f2 have the same number of orbits
of size n.
Theorem 4.2. Let σ ∈ Aut(M) be an automorphism with no infinite
orbit and with infinitely many orbits of size n for every n> 0. Then the
conjugacy class of σ is comeagre in Aut(M).
Proof. We will show that the conjugacy class of σ is an intersection of
countably many comeagre sets.
Let An = {α ∈ Aut(M) | α has infinitely many orbits of size n}. This

set is comeagre for every n > 0. Indeed, we can represent this set as
an intersection of countable family of open dense sets. Let Bn,k be the
set of all finite functions β : M → M that consists of exactly k distinct
n-cycles. Then:

An = {α ∈ Aut(M) | α has infinitely many orbits of size n}

=
∞
⋂

k=1

{α ∈ Aut(M) | α has at least k orbits of size n}

=
∞
⋂

k=1

⋃

β∈Bn,k

[β]Aut(M),

where indeed,
⋃

β∈Bn,k
[β]Aut(M) is dense in Aut(M): take any finite

γ : M → M such that [γ]Aut(M) is nonempty. Then also
⋃

β∈Bn,k
[β]Aut(M)∩

[γ]Aut(M) ̸= ;, one can easily construct a permutation that extends γ
and have at least k many n-cycles.

Now we see that A=
⋂∞

n=1 An is a comeagre set consisting of all func-
tions that have infinitely many n-cycles for each n. The only thing left
to show is that the set of functions with no infinite cycle is also comea-
gre. Indeed, for m ∈ M let Bm = {α ∈ Aut(M) | m has finite orbit in α}.
This is an open dense set. It is a sum over basic open sets generated
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by finite permutations with m in their domain. Denseness is also easy
to see.

Finally, by the proposition 4.1, we can say that

σAut(M) =
∞
⋂

n=1

An ∩
⋂

m∈M

Bm,

which concludes the proof. □

4.2. More general structures.

Fact 4.3. Suppose M is an arbitrary structure and f1, f2 ∈ Aut(M). Then
f1 and f2 are conjugate if and only if (M , f1)∼= (M , f2) as structures with
one additional unary relation that is an automorphism.

Proof. Suppose that f1 = g−1 f2 g for some g ∈ Aut(M). Then g is the
automorphism we’re looking for. On the other hand if g : (M , f1) →
(M , f2) is an isomorphism, then g ◦ f1 = f2◦ g which exactly means that
f1, f2 conjugate. □

Theorem 4.4. LetC be a Fraïssé class of finite structures of a theory T in
a relational language L. Let D be the class of the finite structures of T in
the language L with additional unary function symbol interpreted as an
automorphism of the structure. If C has the weak Hrushovski property
and D is a Fraïssé class, then there is a comeagre conjugacy class in the
automorphism group of the Flim(C ).

Proof. Let Γ = Flim(C ) and (Π,σ) = Flim(D). Let G = Aut(Γ), i.e. G
is the automorphism group of Γ. First, by the theorem 3.21, we may
assume without the loss of generality that Π = Γ. We will construct
a strategy for the second player in the Banach-Mazur game on the
topological space G. This strategy will give us a subset A ⊆ G and as
we will see a subset of a cojugacy class in G. By the Banach-Mazur
theorem 2.11 this will prove that this class is comeagre.
Recall, G has a basis consisting of open sets {g ∈ G | g ↾A= g0 ↾A}

for some finite set A ⊆ Γ and some automorphism g0 ∈ G. In other
words, a basic open set is a set of all extensions of some finite partial
isomorphism g0 of Γ. By Bg ⊆ G we denote a basic open subset given
by a finite partial isomorphism g. From now on we will consider only
finite partial isomorphism g such that Bg is nonempty.
With the use of corollary 2.15 we can consider only games, where

both players choose finite partial isomorphisms. Namely, player I picks
functions f0, f1, . . . and player II chooses g0, g1, . . . such that f0 ⊆ g0 ⊆
f1 ⊆ g1 ⊆ . . ., which identify the corresponding basic open subsets
B f0 ⊇ Bg0

⊇ . . ..
Our goal is to choose gi in such a manner that the resulting function

g =
⋂∞

i=0 gi will be an automorphism of the Fraïssé limit Γ such that
(Γ, g) = FlimD. Precisely,

⋂∞
i=0 Bgi

= {g}, by the Fraïssé theorem 3.8
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it will follow that (Γ, g) ∼= (Π,σ). Hence, by the fact 4.3, g and σ
conjugate in G.
Once again, by the Fraïssé theorem 3.8 and the 3.10 lemma con-

structing gi ’s in a way such that age of (Γ, g) is exactly D and so that
it is weakly ultrahomogeneous will produce expected result. First, let
us enumerate all pairs of structures {〈(An,αn), (Bn,βn)〉}n∈N,∈ D such
that the first element of the pair embeds by inclusion in the second, i.e.
(An,αn) ⊆ (Bn,βn). Also, it may be that An is an empty. We enumerate
the elements of the Fraïssé limit Γ = {v0, v1, . . .}.
Fix a bijection γ : N × N → N such that for any n, m ∈ N we have

γ(n, m)≥ n. This bijection naturally induces a well ordering on N×N.
This will prove useful later, as the main argument of the proof will be
constructed as a bookkeeping argument.
Just for sake of fixing a technical problem, let g−1 = ; and X−1 = ;.

Suppose that player I in the n-th move chooses a finite partial iso-
morphism fn. We will construct gn ⊇ fn and a set Xn ⊆ N2 such that
following properties hold:

(i) gn is an automorphism of the induced substructure Γn,
(ii) gn(vn) and g−1

n (vn) are defined,
(iii) let {〈(An,k,αn,k), (Bn,k,βn,k), fn,k〉}k∈N be the enumeration of all

pairs of finite structures of T with automorphism such that the
first is a substructure of the second, i.e. (An,k,αn,k) ⊆ (Bn,k,βn,k),
and fn,k is an embedding of (An,k,αn,k) in the Γn−1 (which is the
substructure induced by gn−1). Let (i, j) = min{({0, 1, . . .} ×
N) \ Xn−1} (with the order induced by γ). Then Xn = Xn−1 ∪
{(i, j)} and (Bn,k,βn,k) embeds in (Γn, gn) so that this diagram
commutes:

(Γn, gn)

(Bi, j,βi, j) (Γn−1, gn−1)

(Ai, j,αi, j)

f̂i, j ⊆

fi, j⊆

First item makes sure that no infinite orbit will be present in g.
The second item together with the first one are necessary for g to be
an automorphism of Γ. The third item is the one that gives weak
ultrahomogeneity. Now we will show that indeed such gn may be
constructed.
First, we will suffice the item (iii). Namely, we will construct Γ′n, g ′n

such that gn−1 ⊆ g ′n and fi, j extends to an embedding of (Bi, j,βi, j) to
(Γ′n, g ′n). But this can be easily done by the fact, that D has the amal-
gamation property. Moreover, without the loss of generality we can
assume that all embeddings are inclusions.
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(Γ′n, g ′n)

(Bi, j,βi, j) (Γn−1, gn−1)

(Ai, j,αi, j)

⊆ ⊆

⊆⊆

By the weak ultrahomogeneity we may assume that Γ′n ⊆ Γ:

(Bi, j ∪Γn−1,βi, j ∪ gn−1) Γ

(Γ′n, g ′n)

⊆

⊆

f

Now, by the WHP of K we can extend the graph Γ′n ∪ {vn} together
with its partial isomorphism g ′n to a graph Γn together with its automor-
phism gn ⊇ g ′n and without the loss of generality we may assume that
Γn ⊆ Γ. This way we’ve constructed gn that has all desired properties.

Now we need to see that g =
⋂∞

n=0 gn is indeed an automorphism of
Γ such that (Γ, g) has the age H and is weakly ultrahomogeneous. It
is of course an automorphism of Γ as it is defined for every v ∈ Γ and
is a sum of increasing chain of finite automorphisms.

Take any finite structure of T with automorphism (B,β). Then, there
are i, j such that (B,β) = (Bi, j,βi, j) and Ai, j = ;. By the bookkeeping
there was n such that (i, j) = min{{0, 1, . . .} × N \ Xn−1}. This means
that (B,β) embeds into (Γn, gn), hence it embeds into (Γ, g), thus it
has age H . With a similar argument we can see that (Γ, g) is weakly
ultrahomogeneous.
By this we know that g and σ conjugate in G. As we stated in the

beginning of the proof, the set A of possible outcomes of the game (i.e.
possible g ’s we end up with) is comeagre in G, thus σG is also comeagre
and σ is a generic automorphism, as it contains a comeagre set A. □

4.3. Properties of the generic automorphism. Let C be a Fraïssé
class in a finite relational language L with weak Hrushovski property.
LetH be the Fraïssé class of the L-structures with additional automor-
phism symbol. Let Γ = Flim(C ).

Proposition 4.5. Let σ be the generic automorphism of Γ. Then the set
of fixed points of σ is isomorphic to Γ.

Proof. Let S = {x ∈ Γ | σ(x) = x}. First we need to show that it is an
infinite. By the theorem 4.4 we know that (Γ,σ) is the Fraïssé limit of
H , thus we can embedd finite L-structures of any size with identity as
an automorphism of the structure into (Γ,σ). Thus S has to be infinite.
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Also, the same argument shows that the age of the structure is exactly
C . It is weakly ultrahomogeneous, also by the fact that (Γ,σ) is in
H . □
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