1. INTRODUCTION

2. Preliminaries

2.1. Descriptive set theory.

Definition 2.1. Suppose *X* is a topological space and $A \subseteq X$. We say that *A* is *meagre* in *X* if $A = \bigcup_{n \in \mathbb{N}} A_n$, where A_n are nowhere dense subsets of *X* (i.e. $Int(\bar{A_n}) = \emptyset$).

Definition 2.2. We say that *A* is *comeagre* in *X* if it is a complement of a meager set. Equivalently, a set is comeagre iff it contains a countable intersection of open dense sets.

Every countable set is nowhere dense in any T_1 space, so, for example, \mathbb{Q} is meager in \mathbb{R} (though being dense), which means that the set of irrationals is comeagre. Another example is...

Definition 2.3. We say that a topological space *X* is a *Baire space* if every comeagre subset of *X* is dense in *X* (equivalently, every meagre set has empty interior).

Definition 2.4. Suppose *X* is a Baire space. We say that a property *P* holds generically for a point in $x \in X$ if $\{x \in X | P \text{ holds for } x\}$ is comeagre in *X*.

Definition 2.5. Let *X* be a nonempty topological space and let $A \subseteq X$. The *Banach-Mazur game of A*, denoted as $G^{\star\star}(A)$ is defined as follows: Players *I* and *II* take turns in playing nonempty open sets $U_0, V_0, U_1, V_1, \ldots$ such that $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq \ldots$ We say that player *II* wins the game if $\bigcap_n V_n \subseteq A$.

There is an important theorem on the Banach-Mazur game: *A* is comeagre iff *II* can always choose sets V_0, V_1, \ldots such that it wins. Before we prove it we need to define notions necessary to formalize this theorem.

Definition 2.6. *T* is *the tree of all legal positions* in the Banach-Mazur game $G^{\star\star}(A)$ when *T* consists of all finite sequences (W_0, W_1, \ldots, W_n) , where W_i are nonempty open sets such that $W_0 \supseteq W_1 \supseteq \ldots \supseteq W_n$. In another words, *T* is a pruned tree on $\{W \subseteq X \mid W$ is open nonempty $\}$.

By [T] we denote the set of all "infinite branches" of T, i.e. infinite sequences $(U_0, V_0, ...)$ such that $(U_0, V_0, ..., U_n, V_n) \in T$ for any $n \in \mathbb{N}$.

Definition 2.7. A strategy for *II* in $G^{**}(A)$ is a subtree $\sigma \subseteq T$ such that

- (i) σ is nonempty,
- (ii) if $(U_0, V_0, \dots, V_n) \in \sigma$, then for all open nonempty $U_{n+1} \subseteq V_n$, $(U_0, V_0, \dots, V_n, U_{n+1}) \in \sigma$,
- (iii) if $(U_0, V_0, \dots, U_n) \in \sigma$, then for unique $V_n, (U_0, V_0, \dots, U_n, V_n) \in \sigma$.

Intuitively, the strategy σ works as follows: *I* starts playing U_0 as any open subset of *X*, then *II* plays unique (by (iii)) V_0 such that $(U_0, V_0) \in \sigma$. Then *I* responds by playing any $U_1 \subseteq V_0$ and *II* plays uniqe V_1 such that $(U_0, V_0, U_1, V_1) \in \sigma$, etc.

2.2. Fraïssé classes.

Fact 2.8 (Fraïssé theorem). Then there exists a unique up to isomorphism counable L-structure M such that...

Definition 2.9. For \mathscr{C} , *M* as in Fact 2.8, we write $FLim(\mathscr{C}) := M$.

Fact 2.10. If \mathscr{C} is a uniformly locally finite Fraïssé class, then $FLim(\mathscr{C})$ is \aleph_0 -categorical and has quantifier elimination.

3. Conjugacy classes in automorphism groups

3.1. **Prototype: pure set.** In this section, M = (M, =) is an infinite countable set (with no structure beyond equality).

Proposition 3.1. If $f_1, f_2 \in Aut(M)$, then f_1 and f_2 are conjugate if and only if for each $n \in \mathbb{N} \cup \{\aleph_0\}$, f_1 and f_2 have the same number of orbits of size n.

Proposition 3.2. The conjugacy class of $f \in Aut(M)$ is dense if and only if...

Proposition 3.3. If $f \in Aut(M)$ has an infinite orbit, then the conjugacy class of f is meagre.

Proposition 3.4. An automorphism f of M is generic if and only if...

Proof.

3.2. More general structures.

Proposition 3.5. Suppose *M* is an arbitrary structure and $f_1, f_2 \in Aut(M)$. Then f_1 and f_2 are conjugate if and only if $(M, f_1) \cong (M, f_2)$.

Definition 3.6. We say that a Fraïssé class \mathscr{C} has *weak Hrushovski property* (*WHP*) if for every $A \in \mathscr{C}$ and partial automorphism $p: A \to A$, there is some $B \in \mathscr{C}$ such that p can be extended to an automorphism of B, i.e. there is an embedding $i: A \to B$ and a $\bar{p} \in \text{Aut}(B)$ such that the following diagram commutes:

$$\begin{array}{c} B \xrightarrow{p} B \\ i \uparrow & i \uparrow \\ A \xrightarrow{p} A \end{array}$$

Proposition 3.7. Suppose \mathscr{C} is a Fraïssé class in a relational language with WHP. Then generically, for an $f \in Aut(FLim(\mathscr{C}))$, all orbits of f are finite.

Proposition 3.8. Suppose \mathscr{C} is a Fraïssé class in an arbitrary countable language with WHP. Then generically, for an $f \in Aut(FLim(\mathscr{C}))$...

3.3. Random graph.

Definition 3.9. The random graph is...

Fact 3.10. The

Proposition 3.11. Generically, the set of fixed points of $f \in Aut(M)$ is isomorphic to M (as a graph).

2