1. INTRODUCTION

2. Preliminaries

2.1. Descriptive set theory.

Definition 2.1. Suppose *X* is a topological space and $A \subseteq X$. We say that *A* is *meagre* in *X* if $A = \bigcup_{n \in \mathbb{N}} A_n$, where A_n are nowhere dense subsets of *X* (i.e. $Int(\bar{A_n}) = \emptyset$).

Definition 2.2. We say that *A* is *comeagre* in *X* if it is a complement of a meagre set. Equivalently, a set is comeagre iff it contains a countable intersection of open dense sets.

Every countable set is nowhere dense in any T_1 space, so, for example, \mathbb{Q} is meagre in \mathbb{R} (though being dense), which means that the set of irrationals is comeagre. Another example is...

Definition 2.3. We say that a topological space *X* is a *Baire space* if every comeagre subset of *X* is dense in *X* (equivalently, every meagre set has empty interior).

Definition 2.4. Suppose *X* is a Baire space. We say that a property *P* holds generically for a point in $x \in X$ if $\{x \in X | P \text{ holds for } x\}$ is comeagre in *X*.

Definition 2.5. Let *X* be a nonempty topological space and let $A \subseteq X$. The *Banach-Mazur game of A*, denoted as $G^{\star\star}(A)$ is defined as follows: Players *I* and *II* take turns in playing nonempty open sets $U_0, V_0, U_1, V_1, \ldots$ such that $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq \ldots$ We say that player *II* wins the game if $\bigcap_n V_n \subseteq A$.

There is an important theorem on the Banach-Mazur game: *A* is comeagre iff *II* can always choose sets V_0, V_1, \ldots such that it wins. Before we prove it we need to define notions necessary to formalise and prove the theorem.

Definition 2.6. *T* is *the tree of all legal positions* in the Banach-Mazur game $G^{\star\star}(A)$ when *T* consists of all finite sequences (W_0, W_1, \ldots, W_n) , where W_i are nonempty open sets such that $W_0 \supseteq W_1 \supseteq \ldots \supseteq W_n$. In another words, *T* is a pruned tree on $\{W \subseteq X \mid W$ is open nonempty $\}$.

By [T] we denote the set of all "infinite branches" of T, i.e. infinite sequences $(U_0, V_0, ...)$ such that $(U_0, V_0, ..., U_n, V_n) \in T$ for any $n \in \mathbb{N}$.

Definition 2.7. A *strategy* for *II* in $G^{\star\star}(A)$ is a subtree $\sigma \subseteq T$ such that

- (i) σ is nonempty,
- (ii) if $(U_0, V_0, \dots, V_n) \in \sigma$, then for all open nonempty $U_{n+1} \subseteq V_n$, $(U_0, V_0, \dots, V_n, U_{n+1}) \in \sigma$,
- (iii) if $(U_0, V_0, \dots, U_n) \in \sigma$, then for unique V_n , $(U_0, V_0, \dots, U_n, V_n) \in \sigma$.

Intuitively, a strategy σ works as follows: *I* starts playing U_0 as any open subset of *X*, then *II* plays unique (by (iii)) V_0 such that $(U_0, V_0) \in \sigma$. Then *I* responds by playing any $U_1 \subseteq V_0$ and *II* plays unique V_1 such that $(U_0, V_0, U_1, V_1) \in \sigma$, etc.

Definition 2.8. A strategy σ is a *winning strategy for II* if for any game $(U_0, V_0 \dots) \in [\sigma]$ (where $[\sigma]$ is defined analogically to [T]) player *II* wins, i.e. $\bigcap_n V_n \subseteq A$.

Now we can state the key theorem.

Theorem 2.9. Let X be a nonempty topological space and let $A \subseteq X$. Then A is comeagre \Leftrightarrow II has a winning strategy in $G^{**}(A)$.

In order to prove it we add an auxilary definition and lemma.

Definition 2.10. Let *S* be a pruned subtree of a strategy σ and let $p = (U_0, V_0, \ldots, V_n) \in S$. We say that *S* is *comprehensive for p* if the family $\mathcal{V}_p = \{V_{n+1} \mid (U_0, V_0, \ldots, V_n, U_{n+1}, V_{n+1}) \in S\}$ (it may be that n = -1) is pairwise disjoint and $\bigcup \mathcal{V}_p$ is dense in V_n .

We say that S is comprehensive if it is comprehensive for any $p = (U_0, V_0, ..., V_n) \in S$.

Lemma 2.11. Let *S* be a comprehensive pruned subtree of a strategy σ . Then:

- (i) For any V_n such that there is p = (U₀, V₀,..., V_n) ∈ S, this p is unique.
 (ii) Let W_n = {V_n | (U₀, V₀,..., V_n) ∈ S}, i.e. W_n is a family of all possible choices player II can make in its n-th move. Then ∪W_n is open and dense in X.
- (iii) There exists such comprehensive $S \subseteq \sigma$.

Proof. (i): Suppose that there are some $p = (U_0, V_0, ..., U_n, V_n)$, $p' = (U'_0, V'_0, ..., U'_n, V'_n)$ such that $V_n = V'_n$ and $p \neq p'$. Let k be the smallest index such that those sequences differ. We have two possibilities:

- $U_k = U'_k$ and $V_k \neq V'_k$ this cannot be true simply by the fact that *S* is a subset of a strategy.
- $U_k \neq U'_k$: by the comprehensiveness of *S* we know that for $q = (U_0, V_0, \dots, U_{k-1}, V_{k-1})$ the set \mathscr{V}_q is pairwise disjoint. Thus $V_k \cap V'_k = \emptyset$, because $V_k, V'_k \in \mathscr{V}_q$. But this leads to a contradiction V_n cannot be a nonempty subset of both V_k, V'_k .

(ii): The lemma is proved by induction on *n*. For n = 0 it follows trivially from the definition of comprehensiveness. Now suppose the lemma is true for *n*. Then the set $\bigcup_{V_n \in W_n} \bigcup \mathscr{V}_{p_{V_n}}$ (p_{V_n} is given uniquely from (i)) is dense and open in *X* by the induction hypothesis. But $\bigcup W_{n+1}$ is its superset, thus $\bigcup W_{n+1}$ is dense and open in *X*.

(iii): We construct *S* recursively as follows:

- (1) $\emptyset \in S$,
- (2) if $(U_0, V_0, \dots, U_n) \in S$, then $(U_0, V_0, \dots, U_n, V_n) \in S$ for the unique V_n given by the strategy σ ,
- (3) let $p = (U_0, V_0, ..., V_n) \in S$, let U_{n+1}^* be the unique set player *II* whould play by σ given that player *I* played $U_{n+1} \subseteq V_n$. Now, by Zorn's Lemma, let \mathscr{U}_p be a maximal collection of nonempty open subsets $U_{n+1} \subseteq V_n$ such that the set $\{U_{n+1}^* | U_{n+1} \in \mathscr{U}_p\}$ is pairwise disjoint. Then put in *S* all $(U_0, V_0, ..., V_n, U_{n+1}, U_{n+1}^*)$ such that $U_{n+1} \in \mathscr{U}_p$. This way *S* is comprehensive for *p*: the family $\mathscr{V}_p = \{V_{n+1} | (U_0, V_0, ..., V_n, U_{n+1}, V_{n+1}) S\}$ is exactly $\{U_{n+1}^* | U_{n+1} \in \mathscr{U}_p\}$, which is pairwise disjoint and $\bigcup \mathscr{V}_p$ is obviously dense in V_n by it's maximality – if there was any open set $\tilde{U}_{n+1} \subseteq V_n$ disjoint from $\bigcup \mathscr{U}_p$, then the family $\mathscr{U}_p \cup \{\tilde{U}_{n+1}\}$ violates the maximality of \mathscr{U}_p .

2

Now we can move to the proof of the Banach-Mazur theorem.

Proof. ⇒: Let (A_n) be a sequence of dense open sets with $\bigcap_n A_n \subseteq A$. The simply *II* plays $V_n = U_n \cap A_n$, which is nonempty by the denseness of A_n .

 \Leftarrow : Suppose *II* has a winning strategy *σ*. We will show that *A* is comeagre. Suppose we have a comprehensive *S* ⊆ *σ*. We claim that $\mathscr{W} = \bigcap_n \bigcup W_n \subseteq A$. By 2.11, (ii) sets $\bigcup W_n$ are open and dense, thus *A* must be comeagre. Now we prove the claim.

(A.a.) Suppose there is $x \in \mathcal{W}$ that is not in *A*. We will prove by induction that for any *n* there is exactly one $V_n \in W_n$ such that $x \in V_n$. For n = 0 this follows trivially by the comprehensiveness of *S*. Now suppose that there is exactly one $V_n \in W_n$ such that $x \in V_n$. By our assumption there is a $V'_{n+1} \in W_{n+1}$ such that $x \in V'_{n+1}$. By 2.11 we have unique $p_{V'_{n+1}} = (U'_0, V'_0, \dots, V'_{n+1}) \in S$. It must be that $x \in V'_n$, so by the induction hypothesis $V'_n = V_n$, thus $V'_{n+1} \in \mathscr{V}_{p_{V_n}}$. But the family $\mathscr{V}_{p_{V_n}}$ is disjoint, hence $V_{n+1} = V'_{n+1}$ is unique.

Now the game $(U_0, V_0, U_1, V_1, ...) = \bigcup_n p_{V_n} \in [S] \subseteq [\sigma]$ where $x \in V_0, V_1, ...$ is not winning for player *II*, which contradicts the assumption that σ is a winning strategy.

Pytania:

- Czy da się coś zrobić, żeby 𝒴 nie było takie brzydkie?
- Jak to napisać, że się zrzyna z książki?
- Dodatkowy przykład pod def 2.2
- $G^{**}(A)$ czy $G^{**}(A)$? Czy może $G^{**}(X,A)$? Jakiś skrót na to?
- w 2.11 (i), jak to ładniej sformułować?
- w 2.11 (iii), może to wyodrębnić? Może to dać jako pierwsze, a pierwsze dwa później?
- dodać tytuł do 2.9
- czy w dowodzie twierdzenia napisać jeszcze raz co to jest W_n ?

2.2. Fraïssé classes.

Fact 2.12 (Fraïssé theorem). Then there exists a unique up to isomorphism counable *L*-structure *M* such that...

Definition 2.13. For \mathscr{C} , *M* as in Fact 2.12, we write $FLim(\mathscr{C}) := M$.

Fact 2.14. If \mathscr{C} is a uniformly locally finite Fraissé class, then $FLim(\mathscr{C})$ is \aleph_0 -categorical and has quantifier elimination.

3. Conjugacy classes in automorphism groups

3.1. **Prototype: pure set.** In this section, M = (M, =) is an infinite countable set (with no structure beyond equality).

Proposition 3.1. If $f_1, f_2 \in Aut(M)$, then f_1 and f_2 are conjugate if and only if for each $n \in \mathbb{N} \cup \{\aleph_0\}$, f_1 and f_2 have the same number of orbits of size n.

Proposition 3.2. The conjugacy class of $f \in Aut(M)$ is dense if and only if...

Proposition 3.3. If $f \in Aut(M)$ has an infinite orbit, then the conjugacy class of f is meagre.

Proposition 3.4. An automorphism f of M is generic if and only if...

Proof.

3.2. More general structures.

Proposition 3.5. Suppose *M* is an arbitrary structure and $f_1, f_2 \in Aut(M)$. Then f_1 and f_2 are conjugate if and only if $(M, f_1) \cong (M, f_2)$.

Definition 3.6. We say that a Fraïssé class \mathscr{C} has *weak Hrushovski property* (*WHP*) if for every $A \in \mathscr{C}$ and partial automorphism $p: A \to A$, there is some $B \in \mathscr{C}$ such that p can be extended to an automorphism of B, i.e. there is an embedding $i: A \to B$ and a $\bar{p} \in \text{Aut}(B)$ such that the following diagram commutes:

$$\begin{array}{c} B \xrightarrow{p} B \\ \stackrel{i}{\uparrow} & \stackrel{i}{\uparrow} \\ A \xrightarrow{p} A \end{array}$$

Proposition 3.7. Suppose \mathscr{C} is a Fraissé class in a relational language with WHP. Then generically, for an $f \in Aut(FLim(\mathscr{C}))$, all orbits of f are finite.

Proposition 3.8. Suppose \mathscr{C} is a Fraissé class in an arbitrary countable language with WHP. Then generically, for an $f \in Aut(FLim(\mathscr{C})) \dots$

3.3. Random graph.

Definition 3.9. The random graph is...

Fact 3.10. The

Proposition 3.11. Generically, the set of fixed points of $f \in Aut(M)$ is isomorphic to M (as a graph).