
1. Introduction

2. Preliminaries

2.1. Descriptive set theory.

Definition 2.1. Suppose X is a topological space and A ⊆ X . We say that A
is meagre in X if A=

⋃

n∈N An, where An are nowhere dense subsets of X (i.e.
Int(Ān) = ;).

Definition 2.2. We say thatA is comeagre in X if it is a complement of ameagre
set. Equivalently, a set is comeagre iff it contains a countable intersection of
open dense sets.

Every countable set is nowhere dense in any T1 space, so, for example, Q
is meagre in R (though being dense), which means that the set of irrationals
is comeagre. Another example is...

Definition 2.3. We say that a topological space X is a Baire space if every
comeagre subset of X is dense in X (equivalently, every meagre set has empty
interior).

Definition 2.4. Suppose X is a Baire space. We say that a property P holds
generically for a point in x ∈ X if {x ∈ X | P holds for x} is comeagre in X .

Definition 2.5. Let X be a nonempty topological space and let A ⊆ X . The
Banach-Mazur game of A, denoted as G⋆⋆(A) is defined as follows: Players I
and I I take turns in playing nonempty open sets U0, V0, U1, V1, . . . such that
U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ . . .. We say that player I I wins the game if

⋂

n Vn ⊆ A.

There is an important theorem on the Banach-Mazur game: A is comeagre
iff I I can always choose sets V0, V1, . . . such that it wins. Before we prove it
we need to define notions necessary to formalise and prove the theorem.

Definition 2.6. T is the tree of all legal positions in the Banach-Mazur game
G⋆⋆(A) when T consists of all finite sequences (W0, W1, . . . , Wn), where Wi are
nonempty open sets such that W0 ⊇W1 ⊇ . . . ⊇Wn. In another words, T is a
pruned tree on {W ⊆ X |W is open nonempty}.

By [T] we denote the set of all "infinite branches" of T , i.e. infinite se-
quences (U0, V0, . . .) such that (U0, V0, . . . Un, Vn) ∈ T for any n ∈ N.

Definition 2.7. A strategy for I I in G⋆⋆(A) is a subtree σ ⊆ T such that
(i) σ is nonempty,
(ii) if (U0, V0, . . . , Vn) ∈ σ, then for all open nonempty Un+1 ⊆ Vn,
(U0, V0, . . . , Vn, Un+1) ∈ σ,

(iii) if (U0, V0, . . . , Un) ∈ σ, then for unique Vn, (U0, V0, . . . , Un, Vn) ∈ σ.

Intuitively, a strategy σ works as follows: I starts playing U0 as any open
subset of X , then I I plays unique (by (iii)) V0 such that (U0, V0) ∈ σ. Then I re-
sponds by playing any U1 ⊆ V0 and I I plays uniqe V1 such that (U0, V0, U1, V1) ∈
σ, etc.

Definition 2.8. A strategy σ is a winning strategy for I I if for any game
(U0, V0 . . .) ∈ [σ] (where [σ] is defined analogically to [T]) player I I wins, i.e.
⋂

n Vn ⊆ A.
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Now we can state the key theorem.

Theorem 2.9. Let X be a nonempty topological space and let A⊆ X . Then A is
comeagre⇔ I I has a winning strategy in G⋆⋆(A).

In order to prove it we add an auxilary definition and lemma.

Definition 2.10. Let S be a pruned subtree of a strategy σ and let p =
(U0, V0, . . . , Vn) ∈ S. We say that S is comprehensive for p if the family Vp =
{Vn+1 | (U0, V0, . . . , Vn, Un+1, Vn+1) ∈ S} (it may be that n = −1) is pairwise
disjoint and
⋃

Vp is dense in Vn.
We say that S is comprehensive if it is comprehensive for any p =

(U0, V0, . . . , Vn) ∈ S.

Lemma 2.11. Let S be a comprehensive pruned subtree of a strategy σ. Then:
(i) For any Vn such that there is p = (U0, V0, . . . , Vn) ∈ S, this p is unique.
(ii) Let Wn = {Vn | (U0, V0, . . . , Vn) ∈ S}, i.e. Wn is a family of all possible

choices player I I can make in its n-th move. Then
⋃

Wn is open and
dense in X .

(iii) There exists such comprehensive S ⊆ σ.

Proof. (i): Suppose that there are some p = (U0, V0, . . . , Un, Vn), p′ =
(U ′0, V ′0 , . . . , U ′n, V ′n) such that Vn = V ′n and p ̸= p′. Let k be the smallest index
such that those sequences differ. We have two possibilities:

• Uk = U ′k and Vk ̸= V ′k – this cannot be true simply by the fact that S is
a subset of a strategy.
• Uk ̸= U ′k: by the comprehensiveness of S we know that for q =
(U0, V0, . . . , Uk−1, Vk−1) the set Vq is pairwise disjoint. Thus Vk∩V ′k = ;,
because Vk, V ′k ∈ Vq. But this leads to a contradiction – Vn cannot be
a nonempty subset of both Vk, V ′k .

(ii): The lemma is proved by induction on n. For n = 0 it follows trivially
from the definition of comprehensiveness. Now suppose the lemma is true
for n. Then the set

⋃

Vn∈Wn

⋃

VpVn
(pVn

is given uniquely from (i)) is dense
and open in X by the induction hypothesis. But

⋃

Wn+1 is its superset, thus
⋃

Wn+1 is dense and open in X .
(iii): We construct S recursively as follows:
(1) ; ∈ S,
(2) if (U0, V0, . . . , Un) ∈ S, then (U0, V0, . . . , Un, Vn) ∈ S for the unique Vn

given by the strategy σ,
(3) let p = (U0, V0, . . . , Vn) ∈ S, let U⋆n+1 be the unique set player I I whould

play byσ given that player I played Un+1 ⊆ Vn. Now, by Zorn’s Lemma,
let Up be a maximal collection of nonempty open subsets Un+1 ⊆ Vn
such that the set {U⋆n+1 | Un+1 ∈ Up} is pairwise disjoint. Then put in S
all (U0, V0, . . . , Vn, Un+1, U⋆n+1) such that Un+1 ∈ Up. This way S is com-
prehensive for p: the family Vp = {Vn+1 | (U0, V0, . . . , Vn, Un+1, Vn+1) S}
is exactly {U⋆n+1 | Un+1 ∈ Up}, which is pairwise disjoint and

⋃

Vp is
obviously dense in Vn by it’s maximality – if there was any open set
Ũn+1 ⊆ Vn disjoint from

⋃

Up, then the family Up ∪ {Ũn+1} violates
the maximality of Up.

□
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Now we can move to the proof of the Banach-Mazur theorem.

Proof. ⇒: Let (An) be a sequence of dense open sets with
⋂

n An ⊆ A. The
simply I I plays Vn = Un ∩ An, which is nonempty by the denseness of An.
⇐: Suppose I I has a winning strategy σ. We will show that A is comeagre.

Suppose we have a comprehensive S ⊆ σ. We claim that W =
⋂

n

⋃

Wn ⊆ A.
By 2.11, (ii) sets

⋃

Wn are open and dense, thus A must be comeagre. Now
we prove the claim.

(A.a.) Suppose there is x ∈W that is not in A. We will prove by induction
that for any n there is exactly one Vn ∈ Wn such that x ∈ Vn. For n = 0 this
follows trivially by the comprehensiveness of S. Now suppose that there is
exactly one Vn ∈Wn such that x ∈ Vn. By our assumption there is a V ′n+1 ∈Wn+1
such that x ∈ V ′n+1. By 2.11 we have unique pV ′n+1

= (U ′0, V ′0 , . . . , V ′n+1) ∈ S. It
must be that x ∈ V ′n, so by the induction hypothesis V ′n = Vn, thus V ′n+1 ∈ VpVn

.
But the family VpVn

is disjoint, hence Vn+1 = V ′n+1 is unique.
Now the game (U0, V0, U1, V1, . . .) =

⋃

n pVn
∈ [S] ⊆ [σ] where x ∈ V0, V1, . . .

is not winning for player I I , which contradicts the assumption that σ is a
winning strategy. □

Pytania:
• Czy da się coś zrobić, żeby V nie było takie brzydkie?
• Jak to napisać, że się zrzyna z książki?
• Dodatkowy przykład pod def 2.2
• G⋆⋆(A) czy G∗∗(A)? Czy może G∗∗(X , A)? Jakiś skrót na to?
• w 2.11 (i), jak to ładniej sformułować?
• w 2.11 (iii), może to wyodrębnić? Może to dać jako pierwsze, a
pierwsze dwa później?
• dodać tytuł do 2.9
• czy w dowodzie twierdzenia napisać jeszcze raz co to jest Wn?

2.2. Fraïssé classes.
Fact 2.12 (Fraïssé theorem). Then there exists a unique up to isomorphism
counable L-structure M such that...
Definition 2.13. For C , M as in Fact 2.12, we write FLim(C ) := M .
Fact 2.14. If C is a uniformly locally finite Fraïssé class, then FLim(C ) is ℵ0-
categorical and has quantifier elimination.

3. Conjugacy classes in automorphism groups

3.1. Prototype: pure set. In this section, M = (M ,=) is an infinite countable
set (with no structure beyond equality).
Proposition 3.1. If f1, f2 ∈ Aut(M), then f1 and f2 are conjugate if and only if
for each n ∈ N∪ {ℵ0}, f1 and f2 have the same number of orbits of size n.
Proposition 3.2. The conjugacy class of f ∈ Aut(M) is dense if and only if...
Proposition 3.3. If f ∈ Aut(M) has an infinite orbit, then the conjugacy class
of f is meagre.
Proposition 3.4. An automorphism f of M is generic if and only if...
Proof. □
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3.2. More general structures.

Proposition 3.5. Suppose M is an arbitrary structure and f1, f2 ∈ Aut(M).
Then f1 and f2 are conjugate if and only if (M , f1)∼= (M , f2).

Definition 3.6. We say that a Fraïssé class C has weak Hrushovski property
(WHP) if for every A∈ C and partial automorphism p : A→ A, there is some
B ∈ C such that p can be extended to an automorphism of B, i.e. there is
an embedding i : A→ B and a p̄ ∈ Aut(B) such that the following diagram
commutes:

B B

A A

p̄

i
p

i

Proposition 3.7. Suppose C is a Fraïssé class in a relational language with
WHP. Then generically, for an f ∈ Aut(FLim(C )), all orbits of f are finite.

Proposition 3.8. Suppose C is a Fraïssé class in an arbitrary countable lan-
guage with WHP. Then generically, for an f ∈ Aut(FLim(C )) ...

3.3. Random graph.

Definition 3.9. The random graph is...

Fact 3.10. The

Proposition 3.11. Generically, the set of fixed points of f ∈ Aut(M) is isomor-
phic to M (as a graph).
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