From fa334cef8c04e50a45b366a3427db18e638fc992 Mon Sep 17 00:00:00 2001
From: Franciszek Malinka <franciszek.malinka@gmail.com>
Date: Sun, 10 Jul 2022 20:24:41 +0200
Subject: Capitalised words before \ref

---
 sections/fraisse_classes.tex | 6 +++---
 1 file changed, 3 insertions(+), 3 deletions(-)

(limited to 'sections/fraisse_classes.tex')

diff --git a/sections/fraisse_classes.tex b/sections/fraisse_classes.tex
index 5f3d833..74a8d61 100644
--- a/sections/fraisse_classes.tex
+++ b/sections/fraisse_classes.tex
@@ -289,7 +289,7 @@
   \end{definition}
 
   Actually we did already implicitly worked with free amalgamation in the 
-  proposition \ref{proposition:finite-graphs-fraisse-class}, showing that
+  Proposition \ref{proposition:finite-graphs-fraisse-class}, showing that
   the class of finite strcuture is indeed a Fraïssé class.
 
 
@@ -369,7 +369,7 @@
 	  \end{tikzcd}
 	\end{center}
 	
-	Then, by the fact \ref{fact:functor_iso}, $\otimes_C(\eta)$ is an automorphism
+	Then, by the Fact \ref{fact:functor_iso}, $\otimes_C(\eta)$ is an automorphism
 	of the pushout diagram:
 	
 	\begin{center}
@@ -475,7 +475,7 @@
 
   \begin{proof}
 	Let $\Gamma=\Flim(\cC)$ and $(\Pi, \sigma) =\Flim(\cD)$. By the Fraïssé 
-	theorem \ref{theorem:fraisse_thm} it suffices to show that the age of $\Pi$
+	Theorem \ref{theorem:fraisse_thm} it suffices to show that the age of $\Pi$
 	is $\cC$ and that it is weakly ultrahomogeneous. The
 	former comes easily, as for every structure $A\in \cC$ we have the structure
 	$(A, \id_A)\in \cD$, which means that the structure $A$ embeds into $\Pi$.
-- 
cgit v1.2.3